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Abstract- A novel approach to model metallic surfaces by means of wire-grids is presented. We establish a theoretical basis for 

partitioning the surface into thin flat strips that then can be replaced by wires having an equivalent radius, which can be calculated 

from well-known formulas for planar dipoles. Numerical examples show that the proposed model is not sensitive to the choice of the 

wire radius and that the so-called equal area rule for wire-grid modeling is not supported by our approach.  

 

Index Terms- Wire equivalent radius, Method of Moments, metallic surfaces, equivalent wire-grids, wire-grid model, equal area rule. 

 

 

I. INTRODUCTION 

ere an equivalent wire-grid model for the calculation of scattering and radiation by solid conducting surfaces is presented. The 

modeling of metallic surfaces by means of wire-grids is still attractive due to its simplicity and because algorithms written 

specifically for wire structures can be easily extended for the modeling of surfaces. Wire-grids have been investigated in the past in 

the frame of the Method of Moments (MoM) and some guidelines for choosing the wire length and radius have been deducted from 

the observation of numerical results and validated by measurements [1], [2], [3], [4]. In particular, the so-called “equal area rule” 

(EAR) or “same surface area” has become widely used in Numerical Electromagnetics Code (NEC) wire-grid models [5], [6], [7], [8]. 

The EAR states that the wire segment area must equal the surface patch area being modeled by the wire-grid, so the wire radius can be 

obtained from this area. For the case of square patches, the EAR radius is then 1/(2𝜋) of the square side. This is a rule of thumb that 

has been applied over the years with relative success; however it does not have a theoretical justification and a way to demonstrate it 

from the Electromagnetics first principles cannot be easily visualized. Since numerical results have been reported to be very sensitive 

to the wire radius, the choice of the optimum radius is still considered to be an art [3], [6], [7], [8].  

This article will establish a theoretical basis for the choice of the wire-grid radii and will show that the EAR is not a universal rule and 

that is actually associated with the particular implementation of the MoM in NEC. From an Electric Field Integral Equation (EFIE) an 

equivalent wire-grid model for general solid conducting surfaces will be obtained. A surface will be first modeled by a grid of flat 

strips whose widths are chosen to cover the whole surface. Then, it will be shown that the strips can be replaced by cylindrical wire 

segments with an equivalent radius. Moreover, the equivalent radius of a flat strip in the grid equals 0.22 of the strip width, which is a 

well-known theoretical result obtained for an isolated conducting strip in free space [9]. Therefore, an equivalent radius supported by 

theory different from the EAR radius will be obtained.  

This paper is organized as follows. In section II, the EFIE and the MoM in the frequency domain used to calculate the current 

distribution on surfaces and wire-grids are described. Section III reviews the concept of equivalent radius, which is then used to 

deduce the equivalent radius for strip grids in Section IV. The EAR is described in Section V to show the differences with the 

theoretical equivalent radius obtained in Section IV. These results are then validated by numerical examples of canonical closed 

surfaces in Section VI, where the total electric field must vanish inside the surfaces when an external plane wave impinges on the 

structure. In the case of a small sphere compared to the wavelength, the MoM calculations satisfactorily reproduce the closed-form 

equations of the external scattered field just on the sphere surface, which shows that the proposed model can also be applied to the 

prediction of near fields. 

 

II. METHOD OF MOMENTS FOR SURFACES AND WIRES 

The MoM is a numerical technique extensively applied to solve integral equations in Electromagnetics [1]. In the case of perfectly 

conducting surfaces, an EFIE can be obtained from the boundary condition of zero total tangential electric field on the surfaces. There 

is a variety of formulations for the EFIE with pros and contras depending of the ulterior application of the MoM [10]. We will 

consider the following formulation: 

  

 𝒏  ×  
𝑗

𝜔𝜀
   𝑘2 𝑱 𝒓′  𝐺 𝒓, 𝒓′ + ∇′ ∙ 𝑱 𝒓′  ∇𝐺 𝒓, 𝒓′    𝑑𝑆 ′

𝑆
=  𝒏 × 𝑬𝑖                                           (1)                         

H 
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where 𝑬𝑖  is the incident electric field at the observation point 𝒓 on the surface S, 𝒏  is the unit vector normal to S at 𝒓, 𝑱 is the electric 

current density at the source point 𝒓′, 𝑘 = 2𝜋/𝜆 is the wave number, 𝜆 is the wavelength, 𝜔 = 2𝜋𝑓 is the angular frequency, f is the 

frequency in Hertz, 𝜀 is the dielectric constant of free space, and G is the free space Green's function given by 

 

                                                                                          𝐺 𝒓, 𝒓′ =  
𝑒−𝑗𝑘  𝒓 − 𝒓′  

4𝜋  𝒓−𝒓′ 
                                                                                       (2)  

 

Note that the left-hand side of (1) is the tangential component of the scattered electric field at 𝒓 and that G has a singularity at 𝒓 = 𝒓′. 
If we consider a general curved surface that is described by a parametric function, such as 𝒓 = 𝒓(𝑢, 𝑣), 𝑢0  ≤ 𝑢 ≤ 𝑢𝑈 , 𝑣0  ≤ 𝑣 ≤ 𝑣𝑉 , 

the vector current density can be expressed in terms of its scalar components 𝐽𝑢  and 𝐽𝑣 , 

 

             𝑱 𝑢, 𝑣 =  𝐽𝑢 𝑢, 𝑣  𝒖  + 𝐽𝑣 𝑢, 𝑣  𝒗                (3) 

 

where 𝒖   and 𝒗  are tangent unit vectors to the surface, so 𝒏  =  𝒖  ×  𝒗 , and can be obtained from the first partial derivatives of 𝒓(𝑢, 𝑣) 

[10]. 

 

We can also define the impedance operator Z that acts on a scalar function 𝐽 = 𝐽(𝑢, 𝑣) as follows: 

 

                             𝑍𝑢𝑣  𝐽 =  
𝑗

𝜔𝜀
    𝑘2 𝐽(𝑢′ , 𝑣′ )  𝒖 ∙ 𝒗 ′  𝐺 𝑢, 𝑣, 𝑢′ , 𝑣′ + ∇′ ∙ 𝐽(𝑢′ , 𝑣 ′ )𝒗 ′  𝒖 ∙ ∇𝐺 𝑢, 𝑣, 𝑢′ , 𝑣′     𝑑𝑢′𝑑𝑣′

𝑆
                         (4) 

 

Then, (1) can be written as a set of two integral equations, 

 

𝑍𝑢𝑢  𝐽𝑢 + 𝑍𝑢𝑣  𝐽𝑣 =  𝑬𝑖 ∙ 𝒖  
(5) 

𝑍𝑣𝑢  𝐽𝑢 + 𝑍𝑣𝑣  𝐽𝑣 =  𝑬𝑖 ∙ 𝒗  

 

We can see that if the surface parameterization is chosen so that 𝒖   and 𝒗  are mutually orthogonal for all 𝑢 and 𝑣, then 𝒖 ∙ 𝒗 = 0 and 

the first term in (4) vanishes for 𝑍𝑢𝑣  and 𝑍𝑣𝑢 . This is an important result since we will obtain a reduced number of calculations by 

choosing an orthogonal description of the surface. 

The impedance operator in (5) is linear, so the MoM can be applied to transform the EFIE into a system of linear equations of finite 

order. After expanding the current density components into a set  𝐹𝑛  of N basis functions and projecting the resulting sum on a set 
 𝑇𝑚   of N testing functions, we obtain 

 

 

    𝑇𝑚 ,  𝑍𝑢𝑢 𝐹𝑛  𝐽𝑢,𝑛 +   𝑇𝑚 ,  𝑍𝑢𝑣 𝐹𝑛  𝐽𝑣,𝑛   

𝑛

=   𝑇𝑚 , 𝐸𝑢   

(6) 

    𝑇𝑚 ,  𝑍𝑣𝑢𝑇𝑛   𝐽𝑢,𝑛 +   𝑇𝑚 ,  𝑍𝑣𝑣𝐹𝑛  𝐽𝑣,𝑛   

𝑛

=   𝑇𝑚 , 𝐸𝑣  

 

 

which is a set of linear equations of order 2𝑁 × 2𝑁 with unknown coefficients  𝐽𝑢,𝑛 , 𝐽𝑣,𝑛   and where 𝐸𝑢 =  𝑬𝑖 ∙ 𝒖  and 𝐸𝑣 =  𝑬𝑖 ∙ 𝒗  .  

This is a quite general formulation where we have not yet made any approximation on the integrals involved and nothing is said about 

the choice of the basis and testing functions. For calculations to be manageable in practice, it is usual to choose functions that are 

defined on small regions of S compared to the wavelength and that are canceled in the rest of the surface [11]. To do this, we can 

partition the surface into quasi-rectangular regions by dividing the domain of 𝒓 = 𝒓(𝑢, 𝑣) into segments along 𝑢 and 𝑣: 𝑢0 < 𝑢1 <
⋯ < 𝑢𝑈   and 𝑣0 < 𝑣1 < ⋯ < 𝑣𝑉 . We will obtain in this way a surface partition as depicted in Fig. 1. We then realize that the surface 

can be seen as if it were made up of two sets of strips, namely, one set 𝑆 𝑢, 𝑣𝑛  along the 𝑢 coordinate and another set 𝑆(𝑢𝑛 , 𝑣) along 

the 𝑣 coordinate. Thus, 𝑍𝑢𝑢  describes the self and mutual interactions of strips within the set 𝑆 𝑢, 𝑣𝑛 , 𝑍𝑣𝑣  describes the self and 

mutual interactions within the set 𝑆(𝑢𝑛 , 𝑣), while 𝑍𝑢𝑣  and 𝑍𝑣𝑢  describe the mutual interactions between both sets of surface strips. 
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Fig. 1: Partition of a surface S into small regions compared to the wavelength, so 𝑤𝑖 𝑢 , 𝑤𝑖(𝑣) ≪ 𝜆. The 

surface can be viewed as made up of two sets of thin strips along two independent directions, u and v. 

 

 

If we focus on 𝑍𝑢𝑢  interactions and isolate a single strip 𝑆 𝑢, 𝑣𝑖 , we will obtain (4) with 𝒗 ′ =  𝒖 ′ and 𝐽 = 𝐽𝑢(𝑢, 𝑣). Furthermore, if the 

strip width is small enough compared to the wavelength, we can assume that its current density is uniform with respect to 𝑣, so (4) is 

reduced to a line integral along the 𝑢 coordinate and (5) reduces to 

 

                                                              
𝑗

𝜔𝜀
   𝑘2 𝐼 𝑢′  𝐾 𝑢, 𝑢′  𝒖 ∙ 𝒖 ′ + 

𝑑𝐼(𝑢 ′ )

𝑑𝑢 ′
 
𝜕𝐾(𝑢,𝑢 ′ )

𝜕𝑢
   𝑑𝑢′

𝑆(𝑢,𝑣𝑖)
=  𝐸𝑢                                               (7) 

  

where 𝐾 𝑢, 𝑢′  is the kernel of this integral equation that can be obtained by integrating the Green’s function in (2) with respect to 𝑣 

and 𝑣′ across the strip cross section. Equation (7) is actually the EFIE for a thin wire to be solved for the current distribution 𝐼(𝑢). We 

can also see that the cross section shape of the thin wire only affects the kernel K locally, in a neighborhood of 𝑢 = 𝑢′. When 𝑢 and 𝑢′ 
are on different strips, (7) represents the mutual interaction between the strips. Note also that (7) does not assume a straight wire, but a 

general curved wire with tangent unit vector 𝒖 . Thus, we will not approximate the strips by means of straight segments, but we will 

use the curvilinear EFIE in (7) for the application of the MoM [12], [13]. We will call this MoM implementation as the Curvilinear 

Method of Moments (CMoM) to distinguish it from the traditional straight wire implementation used in NEC. Regarding the width, w, 

of the strip 𝑆 𝑢, 𝑣𝑖 , it will be a function of the position, u, along the strip and can be calculated as follows: 

 

                                                                     𝑤𝑖 𝑢 =    
𝜕𝒓(𝑢,𝑣)

𝜕𝑣
  𝑑𝑣 ≅   𝒓 𝑢, 𝑣𝑖+1 − 𝒓 𝑢, 𝑣𝑖  

𝑣𝑖+1

𝑣𝑖
                                                       (8) 

 

An identical analysis can be applied by isolating a strip 𝑆(𝑢𝑖 , 𝑣) along the 𝑣 coordinate, consequently we realize that the other terms in 

(5) and (6) are mutual interaction terms between crossing strips on the surface. Thus, we have come to the conclusion that a 

conducting surface can be viewed as composed of strips which extend along and across the surface in two independent directions. 

Besides, each strip can be viewed as a thin wire with a “flat” cross section when the strip widths are small enough compared to the 

wavelength. Having the widths in (8), the strips cover the whole surface without leaving holes between them. To fill the MoM matrix 

in (6) then we have to calculate self and mutual interactions between the segments into which the strips have been divided.  

 

III. THE CONCEPT OF EQUIVALENT RADIUS 

The electromagnetic behavior of thin wires having a circular cross section has been treated and approached theoretically several times 

in the literature [14], [15], [16]. It is well known that this solution can be extended to thin wires having a non-circular cross section by 

calculating an equivalent radius [17]. So, the actual cross section can be replaced by an equivalent circular cross section which 

produces the same near field and input impedance as the actual wire. In the case of a conducting flat strip of width w, by using a 

spectral domain approach to study planar dipoles, Rhodes [9] has established that the equivalent radius, 𝑎𝑒 , is given by  

 

                                                                                            𝑎𝑒 = 𝑒−3/2 𝑤 ≅ 0.22 𝑤                 (9) 

 

As a matter of fact, we have already found in (7) that the kernel of the EFIE for a thin strip is affected by the shape of the strip cross 

section only locally, when the observation point is near to the source point. So, looking for an equivalent radius is just a matter of 

equalizing the kernels between the actual cross section and a circular one, and this is what is at the heart of the procedure to arrive at 

(9). Based on a quasi-static approximation to the magnetic vector potential in the wire cross section, Hallén [18] has found a 
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somewhat different equivalent radius for the flat strip, namely, 𝑎𝑒 = 0.25 𝑤. However, this difference is not significant as we will see 

later, since the electromagnetic response of the equivalent wire-grids is found to be not very sensitive to the choice of the radius. 

We should emphasize that (9) is a result supported theoretically and therefore it does not depend on the numerical method being used 

to calculate the current distribution on a wire. Furthermore, a well-implemented numerical method should reproduce this theoretical 

result. 

 

IV. EQUIVALENT WIRE-GRID MODEL OF A SURFACE 

Having defined the surface strips and revisited the concept of equivalent radius, we are now ready to build an accurate wire-grid 

model for conducting surfaces. As we have seen, to calculate the impedance matrix elements in (6) we have to compute self and 

mutual interactions between the two sets of strips the surface is made of. So, we can identify three kinds of interactions that will be 

described in the following. 

 

A. Interaction of a strip with itself 

Under the assumption of a strip width smaller enough than the wavelength, we can use the CMoM developed in Section II where only 

a line integral along the strip length must be computed for obtaining the impedance matrix elements of a single strip. Under this 

condition, we can also apply the equivalent radius in (9). Thus, this is just the same well-known MoM procedure that applies to thin 

cylindrical wires. However, the radius will possible vary along the wire since the strip width w will generally vary along its length, as 

(8) shows. For a smooth enough variation of the wire radius this is not a problem in a well-implemented MoM, where the basis 

functions are chosen to assure the continuity of the current distribution. We can also point out that the so-called thin-wire 

approximation could be used for the kernel in (7) if the wire radius is small enough compared to the wavelength and to the segment 

length, where the source point is considered to be on the wire axis and the observation point on the wire surface [1]. Thus, the thin-

wire kernel approximation for the strips will be given by 

 

𝐾 𝑢, 𝑣, 𝑢′ , 𝑣′ =  
𝑒−𝑗𝑘𝑅

4𝜋𝑅
 

       (10) 

𝑅 =    𝒓 𝑢, 𝑣 − 𝒓(𝑢′ , 𝑣 ′ ) 2 +   0.22 𝑤(𝑢, 𝑣) 2 

 

B. Mutual interactions between quasi-parallel strips 

Strips that are “quasi-parallel” to each other are those that belong to the same set. For instance, let us take the strips in the set 𝑆 𝑢, 𝑣𝑛 . 

The mutual interaction between the strips 𝑆 𝑢, 𝑣𝑖  and 𝑆 𝑢, 𝑣𝑖+𝑝 , with 𝑝 ≠ 0, can be calculated in the same way we calculate the 

interaction between two quasi-parallel thin wires, where we can use the equivalent radius in (9) and the thin-wire approximation (10) 

in the integral equation’s kernel. Thus, the source point at 𝑆 𝑢, 𝑣𝑖  can be considered to be on the wire axis and the observation point 

at 𝑆 𝑢, 𝑣𝑖+𝑝  on its surface, and vice versa. The width of the strips in (8) prevents them from overlapping each other and also covers 

the whole surface along u, as Fig. 2 shows. Care must be taken when computing the interaction between neighboring strips, 𝑆 𝑢, 𝑣𝑖  

and 𝑆 𝑢, 𝑣𝑖+1 , since the integrands will increase strongly when the source and observation points are close to each other, so an 

iterative quadrature algorithm should be used to compute the integrals in this case [10]. An identical analysis can be applied to the 

strips 𝑆 𝑢𝑛 , 𝑣 .  

 

 

 
 

 
Fig. 2: Quasi-parallel strips along the u direction (u leaves the page). A cut of the surface at u = constant is 

shown, where the cross section of the strips having width w can be seen. Each strip can be replaced by a wire 

of an equivalent radius 𝑎𝑒 = 0.22𝑤.  
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C. Mutual interactions between crossing strips 

For two strips that belong to different sets, the same treatment as for quasi-parallel strips can be applied. So, we will use an equivalent 

radius and a thin-wire kernel to compute the impedance matrix elements when the observation point at 𝑆 𝑢, 𝑣𝑖  is far enough from the 

source point at 𝑆 𝑢𝑝 , 𝑣 . At the point where the strips intersect, we must compute the mutual impedance matrix elements carefully. 

Additional conditions must be added to ensure compliance with Kirchhoff’s law at the junction between the equivalent wires, but this 

depends on the particular implementation of the MoM [1], [10]. For instance, if we use triangular basis functions along the wires, 

Kirchhoff’s law is automatically satisfied by adding just one bent basis function at the junction, as Fig. 3 shows. In the case of NEC, 

sinusoidal basis functions are used and conditions on the derivative of the current distribution are then applied at the junction between 

wires [5]. An additional simplification of the calculations can be obtained if an orthogonal description of the surface is adopted, since 

the first term in (4) goes to zero as we have pointed out previously.  

 

 
 

Fig. 3: Junction between crossing strips. Only the axes of the strips along the independent directions u and v 

are shown. Kirchhoff’s law must be assured at the connection point, which is accomplished by adding one 

bent basis function at the junction when triangular basis functions are used in the MoM. 

    

 

 
 

Fig. 4: Modeling of a flat surface using an orthogonal equivalent wire-grid. The surface is first partitioned 

into uniform strips of width w and then the strips are replaced by wires of radius 𝑎𝑒 = 0.22𝑤. The wire 

segment length will be equal to the strip width, ∆ = 𝑤. 
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As a summary, the wire-grid model we have built consists of dividing the surface into thin strips along two independent directions, the 

strip widths being smaller enough than the wavelength. We then apply the MoM replacing the strips by thin wires with an equivalent 

radius, which allows us to approximate double integrals using line integrals. The equivalent radius at each point on the surface equals 

0.22 of the strip width. We have to notice that the current distributions 𝐼 𝑢  and 𝐼 𝑣  obtained by solving the system of linear 

equations in (6) will be expressed in Amperes, so the components of the current density can be obtained by dividing the currents into 

the strip width at each point. From the current density distribution the near and far fields can be calculated. Since the equivalent radius 

is just an artifact to approximate double integrals using equivalent line integrals, in fact there are no holes in the surface model, so the 

wire-grid model proposed here should reproduce faithfully the near fields even on the surface, where the electric field is perpendicular 

to the surface at each point. The numerical example of a conducting sphere in Section VI will validate this expected result for the 

radial component of the electric field.  

Fig. 4 shows the case of a flat surface partitioned into strips of uniform width, w, of an orthogonal representation. It is interesting to 

note that, if the surface were modeled by a mesh of wire segments in the traditional way, the segment length, Δ (or the side of the 

square “holes”), will be equal to w, so the equivalent wire-grid radius will be given by 

 

                                                                                                 𝑎𝑒 =  0.22 Δ                                                                                           (11) 

 

V. THE EQUAL AREA RULE 

The EAR is a numerical guideline documented for the NEC implementation of the MoM [6], [7], [8]. Let us consider a wire-grid 

model of a conducting surface that consists of square patches, each patch being delimited by four wire segments of radius a and length 

Δ. Then, the EAR states that the wire segment area, 2𝜋𝑎Δ, must equal the square patch area, Δ2. Therefore, the EAR radius may be 

calculated as 

 

                                                                                             𝑎 =  
Δ

2𝜋
 ≅ 0.16 Δ                                                                                       (12) 

 

It is not clear how this rule could be extended to wire-grids of arbitrary shape; however, it has been proposed to consider the average 

of the patch areas on each side of a wire segment [8]. Following the calculations throughout the preceding sections, it does not seem 

possible to find a theoretical justification for this rule. Furthermore, the proposed equivalent wire-grid model should refute the EAR, 

since the difference between equations (11) and (12) is evident. As a matter of fact, the numerical examples in Section VI will be 

found to satisfy the theoretical equivalent radius in (11) rather than the EAR in (12). 

 

VI. NUMERICAL EXAMPLES 

The CMoM for wire structures has been implemented from the general curvilinear EFIE in (7), where we will choose triangular basis 

and pulse testing functions to expand the current distribution and the electric field, respectively, as it is depicted in Figs. 5(a) and 5(b).  

 

 

 
 

Fig. 5: (a) Triangular basis and pulse testing functions used in the CMoM to expand the current distribution 

and weight the electric field along a thin strip. (b) Example of a current distribution along a thin strip 

obtained from the CMoM and represented by the triangular basis functions. 

 

 

The inner product in (6) is a line integral of the field along the wires weighted by the pulse testing functions. In addition, we will allow 

two parallel wires to be very close to each other by calculating carefully the integrals involved when the observation point is very 
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close to the source point. Therefore, this CMoM satisfies the conditions described in Section IV to model conducting surfaces by 

means of equivalent wire-grids. The thin-wire kernel in (10) will be used to compute mutual interaction terms, while the full kernel 

will be used to calculate self-terms. We must remark again that the wire-grid model we have developed does not leave holes in the 

surface because the strips have widths that completely cover the surface.  

In Ref. [19] it has been shown that the EAR minimizes the total electric field inside the closed surface of a cube. This is a good 

indicator of the model validity since the total field inside a perfect Faraday cage must be equal to zero. In addition to the cube case, 

below we will show the numerical results for a closed conducting cylinder and a sphere. 

 

A. Cube 

The closed surface of a metallic cube will be modeled by an orthogonal equivalent wire-grid. The frequency and cube dimensions are 

the same as those used in Ref. [19], so f = 300 MHz (𝜆 = 1 m) and the cube side is 40 cm long. The surface will be partitioned into 

uniform strips of width w = 4 cm (𝑤 = 0.04𝜆), which corresponds to the mesh wire spacing Δ used in Ref. [19]. Then, the equivalent 

radius given by (11) is ae = 8.8 mm, while the EAR radius given by (12) is 6.4 mm. A linearly polarized plane wave with an E-field of 

1 V/m is illuminating the cube and the vertical and oblique polarizations will be analyzed. 

Fig. 6(a) shows the cube where the strips covering the surface have been replaced by lines representing the equivalent wire axes. The 

total electric field calculated using the CMoM at the cube center as a function of the wire radius, a, is plotted in Fig. 6(b), where we 

would expect that the optimal wire radius is the one that minimizes the total E-field. The NEC results extracted from Ref. [19] are also 

shown for comparison. We can see that each minimum is obtained for the radius predicted by the corresponding model. So the EAR 

radius should always be used in NEC, while the equivalent radius 𝑎𝑒  in the CMoM. However, the NEC response is very sensitive to 

the wire radius compared to the CMoM, which has a much smoother variation. In fact, the result is practically the same for radii 

between 7 and 11 mm in the CMoM, so we could choose any a/w between 0.18 and 0.28 to model the cube surface. 

 

 

 

 
 

 
 Fig. 6: (a) Plane wave with vertical polarization illuminating a metallic cube modeled by an equivalent 

CMoM wire-grid. (b) Total E-field at the cube center as a function of the wire radius. The EAR radius and 

the strips equivalent radius are indicated.  

 

 

 

 

 



Golden Engineering R&D, July 2020                         8 

  

info@antennasimulator.com  www.antennasimulator.com 

 
 

Fig. 7: (a) Plane wave with oblique polarization illuminating a metallic cube modeled by an equivalent 

CMoM wire-grid. (b) Total E-field at the cube center as a function of the wire radius. The EAR radius and 

the strips equivalent radius are indicated.  

 

 

Fig. 7(a) shows the same metallic cube as in Fig. 6(a) but with an incident E-field having oblique polarization (45° inclination with 

respect to the vertical z axis). The CMoM total E-field at the cube center is plotted in Fig. 7(b) as a function of the wire radius and the 

NEC results from Ref. [19] are also shown. We can see again a sharp behavior of the NEC field where the values go beyond zero 

quickly for radii different than the EAR, even exceeding 1 V/m for radii less than 5 mm or greater than 10 mm. On the contrary, a 

smooth behavior and field values near zero are obtained in the CMoM calculation for a wide range of radii. 

The authors in Ref. [19] also analyze the case of a triangular mesh approximation to the surface. They expected a better performance 

of the triangular mesh compared to the square mesh but they found, on the contrary, that the radius predicted by the EAR is far from 

the radius that minimizes the field inside the cube. The triangular mesh also fails to reproduce the experimental results. We can 

explain this behavior if we realize that a triangular mesh would cause the linear system in (6) to be overdetermined because we would 

have three linearly dependent directions on the surface instead of two independent directions. In other words, the current density along 

the diagonal direction in a triangular mesh can be obtained from a linear combination of its linearly independent components 

(mutually orthogonal components for the cube), so there's no point in adding a diagonal component in this case.  

 

B. Cylinder 

A closed cylinder 40 cm in diameter and 40 cm in height has been modeled by a CMoM equivalent wire-grid as Fig. 8(a) shows, so 

the cylinder size is similar to the size of the cube analyzed previously. The frequency is also f = 300 MHz. The cylinder surface has 

been partitioned into strips of a uniform width, w = 4 cm, while the cylinder caps have been modeled by using strips of varying widths 

following equation (8). Thus, the cylinder caps are modeled by an equivalent wire-grid of varying radii. A plane wave with an E-field 

of 1 V/m illuminates the cylinder and two linear polarizations will be considered, one parallel to the cylinder axis and the other 

perpendicular to it. Fig. 8(b) shows the total E-field at the cylinder center as a function of the uniform wire radius used in the cylinder 

surface, so the wire radii in the caps remain unchanged. In the case of vertical polarization (solid line), the field changes faster 

compared to the cube case, but the field values are anyway very low for radii between 7 and 11 mm as for the cube. The minimum 

field is obtained for a = 8 mm (a/w = 0.2), in close agreement with the equivalent radius of 8.8 mm (a/w = 0.22). Regarding 

horizontal polarization, Fig. 8(b) (dashed line) shows an even smother behavior, where the field becomes practically independent of 

the wire radius for radii between 10 and 14 mm (a/w between 0.25 and 0.35). Thus, the equivalent radius given by (9) is an optimal 

choice also for the closed cylinder. 

From the point of view of traditional wire-grid modeling, it is always intended that the mesh be uniform over the entire surface, so the 

grid used in the cylinder caps would be considered to be too dense at the center of each disc. Nevertheless, we are modeling under the 

CMoM scheme, where we have no limitations to use dense grids as long as the guidelines described in Section IV are respected. 

Therefore, as long as the widths of the strips are small enough with respect to the wavelength, our effort should be concentrated on 

carefully calculating the matrix elements of the linear system in (6). Also, in many cases it is easier to choose an orthogonal wire-grid 

than to cover the surface with a uniform grid. This happens in the following example of a conducting sphere. 
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Fig. 8: (a) Plane wave illuminating a metallic closed cylinder modeled by an equivalent CMoM wire-grid. (b) 

Total E-field at the cube center as a function of the wire radius for two cases: vertical (solid line) and 

horizontal (dashed line) polarizations. The strips equivalent radius is indicated.  

 

 

C. Sphere 

A conducting sphere is an interesting canonical surface since simple closed form expressions are known for the scattered field when 

the sphere diameter is much smaller than the wavelength [20]. Fig. 9(a) shows the CMoM wire-grid model of a sphere 40 cm in 

diameter, so its size is similar to the cube and cylinder analyzed before. A linearly polarized wave with an E-field of 1 V/m illuminates 

the sphere at a frequency of 300 MHz. The width of each strip varies along its length and has been calculated using equation (8), 

which reduces to the simple calculation of an arc length on the spherical surface. The widest strip is 4 cm wide. Since the equivalent 

wires will also have varying radii, the total E-field at the sphere center has been calculated as a function of the ratio a/w and is shown 

in Fig. 9(b). The behavior of the field is similar to that obtained for the cylinder in vertical polarization, the variation is not so smooth 

but the field values are still very low, especially for a/w between 0.2 and 0.25. The minimum field is obtained for a/w = 0.22, so the 

agreement with equation (9) is remarkable, as in the cube case. 

 

 

 
 

Fig. 9: (a) Linearly polarized plane wave illuminating a metallic sphere modeled by an equivalent CMoM 

wire-grid. (b) Total E-field at the sphere center as a function of the wire radius to strip width ratio. The strips 

equivalent radius is indicated.  
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If we now decrease the frequency to f = 3 MHz (λ = 100 m), the diameter of the sphere measured in wavelengths will be decreased 

100 times, so a closed form expression can be obtained for the scattered field under this condition. With respect to the coordinate 

system shown in Fig. 9(a), if the 1 V/m incident field is polarized along the x-axis, the radial component of the scattered E-field will 

be given by [20] 

 

                                                                                             𝐸𝑟 = 2 sin 𝜃 cos 𝜑                                                                                      (13) 

 

where (𝜃, 𝜑) are the standard spherical coordinates, 0 ≤ 𝜃 ≤ 180° and  0 ≤ 𝜑 ≤ 360°. Fig. 10(a) shows the amplitude of the radial 

component (perpendicular to the surface) of the scattered E-field calculated by means of the CMoM just on the sphere surface. We can 

see that a maximum of 2 V/m is obtained at (𝜃, 𝜑) = (90°, 0°) and (90°, 180°), and a null field is obtained at 𝜑 = 90° and 𝜑 = 270° for 

all 𝜃, in close agreement with equation (13). Fig. 10(b) shows the same plot as in Fig. 10(a) with the zx plane in the plane of the page 

(the y-axis leaves the page towards the reader). 

 

 

 
 

Fig. 10: (a) Color map of the radial component of the scattered E-field calculated via the CMoM just on the 

surface of the sphere when a 1 V/m incident field polarized along the x-axis illuminates the sphere at 3 MHz. 

(b) Same as (a) looking at the sphere from the y-axis. The color scale is in V/m. Sphere diameter is 40 cm. 

 

 

Two slices of the field map in Fig.10 are plotted in Fig. 11. Fig. 11(a) shows the scattered E-field at 𝜑 = 0 as a function of 𝜃, while 

Fig. 11(b) shows the field at 𝜃 = 90° as a function of 𝜑, where the solid line corresponds to equation (13) and the dots are the values 

calculated via the CMoM. The agreement between the CMoM and theory is remarkable taking into account that these are near field 

calculations just on the equivalent wire-grid model of the sphere surface. 

    

 
 

Fig. 11: Radial component of the scattered E-field just on the sphere surface, (a) at 𝜑 = 0 as a function of 𝜃, 

(b) at 𝜃 = 90° as a function of 𝜑. Sphere diameter is 40 cm, f = 3 MHz, 1 V/m incident field polarized along 

x-axis. 
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VII. CONCLUSIONS 

We have established a theoretical frame for the modeling of conducting surfaces using equivalent wire-grids where the wire radius is 

well defined. The Method of Moments has been applied to an Electric Field Integral Equation for a general curved surface described 

by a parametric function. The parametric description is a function of two independent directions along and across the surface. This 

allows us to define strips that cover the whole surface after partitioning the parametric domain. If the widths of the strips are smaller 

enough than the wavelength, then each strip can be replaced by a thin wire having an equivalent radius. The wire-grid obtained in this 

way is equivalent to the original conducting surface since they both have the same electromagnetic response. It has been found that the 

equivalent wire radius can be calculated using the same well-known expression as for an isolated thin flat strip. The numerical results 

obtained for the closed surfaces of a cube, a cylinder and a sphere validate the choice of the equivalent radius proposed here. The 

electromagnetic response of these surfaces shows a behavior that is not very sensitive to the wire radius in a wide range of values, as 

opposed to what is obtained in wire-grid modeling using the Numerical Electromagnetics Code. It is also found that the Equal Area 

Rule is not predicted by theory nor reproduced in the results we have obtained. Due to the generality of our analysis, it is expected that 

this equivalent wire-grid modeling frame can be extended to surfaces that are not in free space, as in the case of planar antennas on 

dielectric substrates. 
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