Antennas and Beyond!
The Antenna Lab
Unlock the world of antenna design! This section offers engaging resources for educators and students, fostering a deeper understanding of antenna theory and practical applications.
-
Modeling Common-Mode Currents in Coaxial Cables: A Hybrid Approach
This article presents a hybrid modeling approach for coaxial transmission line antenna feeders, focusing on the impact of common-mode currents on the antenna radiation pattern. By explicitly modeling the outer shield of coaxial cables, we can accurately predict and mitigate RF interference, enhancing antenna system performance for RF engineers and enthusiasts.
-
Beyond Analytical Formulas: Accurate Coil Inductance Calculation with AN-SOF
Traditional coil inductance calculations often rely on simplified approximations. AN-SOF offers a more accurate approach by considering factors like non-uniform magnetic fields, conductor losses, and complex coil geometries. By using AN-SOF, you can obtain precise inductance values, visualize magnetic field and current distributions, to improve your coil designs.
-
Linking Log-Periodic Antenna Elements Using Transmission Lines
Dive into the world of advanced antenna design with our latest tutorial! Discover the art of connecting Log-Periodic Antenna Elements using Transmission Lines in the AN-SOF Antenna Simulator.
-
Overcoming 7 Limitations in Antenna Design: Introducing AN-SOF’s Conformal Method of Moments
Introducing AN-SOF’s Conformal Method of Moments, a pioneering advancement in antenna design. By effectively addressing seven limitations encountered in traditional methods, this cutting-edge software enables precise modeling and analysis of antennas with intricate geometries.
-
Explore the Cutting-Edge World of AN-SOF Antenna Simulation Software!
This quick overview document provides a concise introduction to the capabilities of AN-SOF, designed to revolutionize the way you approach antenna design.
-
AN-SOF Mastery: Adding Elevated Radials Quickly
Rev up your AN-SOF skills with this video tutorial featuring two fast methods for adding elevated radials.
-
Front-to-Rear and Front-to-Back Ratios: Applying Key Antenna Directivity Metrics
Understand the difference between Front-to-Rear (F/R) and Front-to-Back (F/B) ratios, key metrics for antenna directivity. Learn how to calculate and interpret these values using AN-SOF software. Improve your antenna designs with this essential knowledge.
-
Validating V Antennas: Directivity Analysis with AN-SOF
This article validates AN-SOF’s results against established formulas for V antennas, highlighting its advanced modeling capabilities. We explore optimal angles, directivity enhancements, and precise calculations, making AN-SOF a powerful tool for RF engineers, ham radio enthusiasts, and antenna designers.
-
Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
This step-by-step guide empowers you to simulate circular loop antennas in AN-SOF. We’ll configure the software, define loop geometry, and explore how its size relative to wavelength affects radiation patterns and input resistance. Gain valuable insights into this fundamental antenna type!
-
Yagi-Uda Array
After learning how to simulate a Cylindrical Antenna >, we are ready to build a dipole array. A 3-element Yagi-Uda antenna, consisting of a reflector, a driven element, and a director, is shown in Fig. 1, where the coordinates of the wire ends are indicated in meters. Step 1 | Setup Go to the Setup…
-
Modeling a Center-Fed Cylindrical Antenna with AN-SOF
Learn how to simulate a center-fed cylindrical antenna using AN-SOF software. This step-by-step guide covers setup, geometry creation, simulation, and result analysis. Understand dipole characteristics through practical examples.
-
AN-SOF Data Export: A Guide to Streamlining Your Workflow
Unleash the power of your AN-SOF simulations! This article explores the software’s data export features, enabling you to seamlessly transfer results to spreadsheets for further analysis, report generation, and clear communication of your antenna design findings.
-
Enhancing Antenna Design: Project Merging in AN-SOF
Discover how AN-SOF’s project merging feature enhances antenna design flexibility, unlocking new possibilities.
-
Setting the Radiation Pattern Center
From the far field point of view, the whole structure of an antenna and its surroundings is reduced to a single point at the origin (X,Y,Z) = (0,0,0).
-
H-Field Option in Preferences
We see that most of the time we are interested in calculating only the E-field in antenna projects when we are talking about the near field. For this reason, we have added an option to enable or disable the automatic calculation of the H-Field.
-
Quick Start Guide
Master antenna simulation using AN-SOF software. Enhance your design process and gain insights into the first steps of modeling antennas with ease.
-
Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
Discover 5 antenna models with less than 50 segments in AN-SOF Trial Version. These examples showcase the capabilities of our software for antenna modeling and design, allowing you to evaluate its features for your projects.
-
AN-SOF Antenna Simulation Best Practices: Checking and Correcting Model Errors
Refine AN-SOF antenna simulations. Identify and resolve errors with precision, ensuring model integrity.
-
Adjusting the Color Bar in AN-3D Pattern
It is important to have control over the scales of the graphs for a better presentation and interpretation of the results. We can adjust the maximum and minimum values of the color bar in AN-3D Pattern to obtain increments in multiples of 5 or the value we want.
-
How to Speed Up Simulations in AN-SOF: Tips for Faster Results
Learn how to optimize simulation speed in AN-SOF Antenna Software. Follow valuable tips for faster results by adjusting segments, resolution, and settings. Turbocharge your antenna simulations!