Discover the design and performance characteristics of a high-gain Biquad antenna with a planar reflector for the 866.5 MHz ISM band. This AN-SOF analysis details the antenna's 10.5 dBi gain, 10% impedance bandwidth, and exceptional beam symmetry, providing a professional-grade directional solution for LoRaWAN, UHF RFID, and long-range telemetry applications.
This comprehensive study explores the design and electromagnetic behavior of the rectangular microstrip patch antenna, contrasting classical transmission line theory with AN-SOF numerical simulations. By evaluating resonance, input impedance, and the impact of finite vs. infinite substrates, the article details the specific areas where analytical formulas align with full-wave results and where complex phenomena like surface waves and mutual conductance necessitate advanced computational validation.
Can AI really design antennas? We put it to the test, transforming chatbot suggestions into a working 3-element Yagi-Uda. Discover how AI accelerates design, where it stumbles, and why your expertise still makes the difference.
Discover the new wire selection and editing tools in AN-SOF! From bulk selection with the Selection Box to precise control via the Tabular Input window, these features streamline antenna modeling. Modify multiple wires effortlessly and enhance your workflow. Explore these powerful tools today!
This article presents a hybrid modeling approach for coaxial transmission line antenna feeders, focusing on the impact of common-mode currents on the antenna radiation pattern. By explicitly modeling the outer shield of coaxial cables, we can accurately predict and mitigate RF interference, enhancing antenna system performance for RF engineers and enthusiasts.
Traditional coil inductance calculations often rely on simplified approximations. AN-SOF offers a more accurate approach by considering factors like non-uniform magnetic fields, conductor losses, and complex coil geometries. By using AN-SOF, you can obtain precise inductance values, visualize magnetic field and current distributions, to improve your coil designs.
Dive into the world of advanced antenna design with our latest tutorial! Discover the art of connecting Log-Periodic Antenna Elements using Transmission Lines in the AN-SOF Antenna Simulator.
Introducing AN-SOF’s Conformal Method of Moments, an advanced approach to wire antenna design. By overcoming several limitations of traditional techniques, this method enables accurate modeling and analysis of antennas with complex geometries.
This quick overview document provides a concise introduction to the capabilities of AN-SOF, designed to revolutionize the way you approach antenna design.
Rev up your AN-SOF skills with this video tutorial featuring two fast methods for adding elevated radials.
Understand the difference between Front-to-Rear (F/R) and Front-to-Back (F/B) ratios, key metrics for antenna directivity. Learn how to calculate and interpret these values using AN-SOF software. Improve your antenna designs with this essential knowledge.
This article validates AN-SOF's results against established formulas for V antennas, highlighting its advanced modeling capabilities. We explore optimal angles, directivity enhancements, and precise calculations, making AN-SOF a powerful tool for RF engineers, ham radio enthusiasts, and antenna designers.
Validate the electromagnetic behavior of the helical antenna in its Normal Mode through this detailed study referencing the foundational work of John D. Kraus. By analyzing the transition from a 3D helical structure to its theoretical loop-dipole equivalent, this article demonstrates how AN-SOF accurately captures the broadside radiation pattern and the asymptotic gain limit. Essential reading for engineers and designers modeling compact curved radiators and electrically small antennas.
Validate the precision of the Conformal Method of Moments (CMoM) through this rigorous study of small loop antennas. By comparing simulated circular and square loops against classical asymptotic theory, we demonstrate how AN-SOF accurately models radiation resistance and directivity in the low-frequency limit, where antenna size is a tiny fraction of a wavelength. This article provides essential insights into shape-independence and numerical stability for electrically small radiator design.
Verify the numerical precision of the AN-SOF engine through this detailed validation study of cylindrical dipoles. By testing the principle of energy conservation, comparing input resistance against far-field radiation resistance, we demonstrate a near-perfect correlation with errors below 0.035%. This article also explores gain convergence, establishing that 10 segments per wavelength are sufficient to achieve high-precision results for linear antenna modeling.
Examine the numerical stability of cylindrical dipole modeling through this rigorous convergence study. By analyzing input impedance as a function of discretization density and length-to-radius ratios, this article demonstrates how AN-SOF overcomes the traditional divergence issues found in many MoM codes, such as NEC-2. While older engines often fail to provide convergent reactance values when using a delta-gap source with fine segments, AN-SOF's exact kernel ensures monotonic stability. Validation against the classical 73.1 + j 42.5 Ohm half-wave dipole thin-wire limit and convergence analysis confirm the engine's precision for both resonant and anti-resonant linear antennas.
Is fractal geometry truly necessary for compact antenna performance? We analyze the VE9SRB 'Random' Loop an arbitrarily shaped antenna with the same wire length and aperture as an MI2 Fractal Loop. Using AN-SOF, we demonstrate that while random shapes can achieve comparable gain and impedance, the fractal geometry offers a critical advantage in usable bandwidth.
Discover the power of space-filling curves through this analysis of the MI2 Fractal Loop antenna. Modeled in AN-SOF, this HF 'Snowflake Quad' achieves a resonant resistance and a 2 dBi gain. Learn how fractal iterations enable significant size reduction in HF antennas without the efficiency losses typical of standard small loops.
Dive into the fascinating world of fractal antennas! This article explores their revolutionary design principles using AN-SOF simulation software. Discover how self-similar patterns unlock wider bandwidths, smaller sizes, and superior efficiency compared to traditional antennas.
Explore the design of a self-resonant parabolic cylinder reflector antenna operating at 890-965 MHz. This study analyzes a back-firing dipole-reflector feed system modeled in AN-SOF, demonstrating how to achieve a stable 50-Ohm match and an asymmetric fan-beam pattern (55° Horizontal, 25° Vertical) without complex matching networks.
Explore a compact, self-resonant pyramidal horn antenna designed for the 2.4 GHz WiFi band. This study challenges traditional aperture theory by demonstrating how an electrically small horn, with an axial length of just half a wavelength, can achieve a high gain of 13 dBi. Through AN-SOF wire-grid simulation, we detail the waveguide feed optimization and flare-angle geometry required to bridge the gap between idealized textbook formulas and practical, high-performance DIY antenna construction.
Learn how stacking two V antennas can boost directivity. This article presents a practical Dual V Antenna design and explains how to scale it for any frequency. Includes simulation insights and a link to an online calculator.
Learn the fundamentals of Yagi-Uda arrays with this introductory model. This simulation features a folded dipole driver with arced ends, illustrating how parasitic elements shape a highly directional 9.7 dBi beam and achieve a 15 dB Front-to-Back ratio. This baseline design provides the perfect foundation for mastering antenna feeding, tuning, and optimization using AN-SOF.
Explore the unique behavior of half-wave square loop antennas through AN-SOF simulations. Learn how conductor length affects current distribution and radiation patterns, with practical experiments to validate theory. Download our template to test configurations yourself!
This article analyzes radar cross section (RCS) and reception properties of a passive loop antenna via full-wave simulation. We demonstrate how loop resonance manifests in both RCS patterns and load voltage characteristics.
Explore the fundamentals of folded dipole antennas. Learn how accurate simulations using conformal modeling in AN-SOF reveal the true behavior of curved wire geometries and confirm the expected input impedance.
Validate the high-precision numerical stability of AN-SOF at the extreme low-frequency limit. This article details a simulation of a series RLC circuit designed to resonate at 800 Hz, where the wavelength is 375 kilometers. By comparing the simulated current peaks against classical circuit theory formulas, we demonstrate that the AN-SOF engine maintains its accuracy even when the structure size is a minute fraction of the wavelength. This study provides a step-by-step validation of lumped-element integration and frequency-sweep stability for complex system modeling.
Validate AN-SOF numerical results against classical transmission line theory in this detailed study of a wire-over-ground-plane system. By utilizing the short-circuit and open-circuit impedance technique, we demonstrate how simulated data correlates with standard characteristic impedance formulas. This article provides a step-by-step procedure for modeling lines in the AN-SOF workspace and highlights the engine's precision in handling image theory and near-field interactions for numerical method validation.
This step-by-step guide empowers you to simulate circular loop antennas in AN-SOF. We'll configure the software, define loop geometry, and explore how its size relative to wavelength affects radiation patterns and input resistance. Gain valuable insights into this fundamental antenna type!
Perfect for Beginners: Quick Guide to Helix Antenna Simulation.
Master axial-mode helix design in AN-SOF with this easy step-by-step tutorial. Learn ground plane setup, helix creation, and radiation pattern analysis. Start modeling professional antennas today!
Explore the design and simulation of monopole antennas over imperfect ground using AN-SOF. Learn how ground conditions impact performance and optimize efficiency for LF/MF broadcasting applications.
Master Yagi-Uda simulation in AN-SOF! This quick guide walks you through modeling a 3-element array (reflector, driven element, director). Analyze radiation patterns with professional results.
Learn how to simulate a center-fed cylindrical antenna using AN-SOF software. This step-by-step guide covers setup, geometry creation, simulation, and result analysis. Understand dipole characteristics through practical examples.
Unleash the power of your AN-SOF simulations! This article explores the software's data export features, enabling you to seamlessly transfer results to spreadsheets for further analysis, report generation, and clear communication of your antenna design findings.
Discover how AN-SOF’s project merging feature enhances antenna design flexibility by seamlessly integrating supporting structures, enabling performance comparisons with and without a support.
Improve the clarity of your simulation results by learning how to adjust the radiation pattern origin (or phase center) in AN-SOF. This simple adjustment allows for better visual alignment of the pattern with the actual antenna structure, offering a more intuitive spatial interpretation of the radiation. Importantly, this shift is purely cosmetic and does not affect the fundamental integrity of your simulation metrics, such as absolute gain, directivity, or field magnitude.
Master antenna simulation using AN-SOF software. Enhance your design process and gain insights into the first steps of modeling antennas with ease.
Discover 5 antenna models with less than 50 segments in AN-SOF Trial Version. These examples showcase the capabilities of our software for antenna modeling and design, allowing you to evaluate its features for your projects.
Learn how to create high-quality field isocontours by combining AN-SOF data with Scilab. This guide covers setting up near-field grids, exporting full coordinate data to CSV, and using our custom Scilab script to visualize electric or magnetic field levels as clear, actionable contour plots.
Refine AN-SOF antenna simulations. Identify and resolve errors with precision, ensuring model integrity.
Learn how to optimize simulation speed in AN-SOF Antenna Software. Follow valuable tips for faster results by adjusting segments, resolution, and settings. Turbocharge your antenna simulations!
+ 26 Articles
Show All Articles