How Can We Help?

Search for answers or browse our Knowledge Base.

The Antenna Lab | The Ham's Corner | Advanced RF Edge

Category - Curved Antennas

Explore validation examples featuring curved antennas like loops and helices.

Articles

Precision Modeling of Small Loop Antennas: Validating the Conformal Method of Moments (CMoM)
Validate the precision of the Conformal Method of Moments (CMoM) through this rigorous study of small loop antennas. By comparing simulated circular and square loops against classical asymptotic theory, we demonstrate how AN-SOF accurately models radiation resistance and directivity in the low-frequency limit, where antenna size is a tiny fraction of a wavelength. This article provides essential insights into shape-independence and numerical stability for electrically small radiator design.
Input Impedance and Directivity of Large Circular Loops: Theory vs. Numerical Simulation
Moving beyond the uniform-current simplifications of small antennas, this article analyzes the electromagnetic behavior of electrically large circular loops. By benchmarking AN-SOF numerical results against classical Fourier theory, we explore how loop circumference and wire thickness influence non-uniform current distributions, parallel/series resonances, and axial directivity. This detailed study validates the accuracy of CMoM for curved radiators.
Helical Antennas in Normal Mode: Theoretical Limits and Numerical Validation
Validate the electromagnetic behavior of the helical antenna in its Normal Mode through this detailed study referencing the foundational work of John D. Kraus. By analyzing the transition from a 3D helical structure to its theoretical loop-dipole equivalent, this article demonstrates how AN-SOF accurately captures the broadside radiation pattern and the asymptotic gain limit. Essential reading for engineers and designers modeling compact curved radiators and electrically small antennas.
Validating AN-SOF Simulations for Gain and VSWR of Helix Antennas in Axial Mode
AN-SOF simulations of axial-mode helical antennas closely match John D. Kraus’s classic measurements for gain and VSWR, confirming its accuracy. Using the Conformal Method of Moments, AN-SOF models true helix curvature, delivering reliable predictions for high-gain circularly polarized designs.