How Can We Help?
Search for answers or browse our Knowledge Base.
Tag - antenna design
Articles covering various models and techniques for antenna design.
Articles
This comprehensive study explores the design and electromagnetic behavior of the rectangular microstrip patch antenna, contrasting classical transmission line theory with AN-SOF numerical simulations. By evaluating resonance, input impedance, and the impact of finite vs. infinite substrates, the article details the specific areas where analytical formulas align with full-wave results and where complex phenomena like surface waves and mutual conductance necessitate advanced computational validation.
Can AI really design antennas? We put it to the test, transforming chatbot suggestions into a working 3-element Yagi-Uda. Discover how AI accelerates design, where it stumbles, and why your expertise still makes the difference.
Here is a comprehensive guide to modeling, feeding, and tuning half-wave dipoles, offering principles and techniques that can be applied to any antenna system.
In this article, we provide an overview of various numerical methods used in Computational Electromagnetics (CEM), with a special focus on antenna simulation methods such as FDTD, FEM, MoM, CMoM, FMM, MLFMM, FVTD, GO, GTD, UTD, PO, PTD, and DDM.
Dive into the intricacies of Skeleton Slot antennas. Explore optimal designs, balancing geometry parameters, and leveraging simulation tools. Ideal for both engineers and enthusiasts!
Explore a simple, low-cost method to simulate 2.4 GHz solid wheel antennas with reliable first-order accuracy and practical efficiency.
Discover a practical first-order method for modeling microstrip antennas on ungrounded dielectric substrates with simplicity and ease.
Introducing AN-SOF’s Conformal Method of Moments, an advanced approach to wire antenna design. By overcoming several limitations of traditional techniques, this method enables accurate modeling and analysis of antennas with complex geometries.
Discover how the Wave Matching Coefficient (WMC) redefines near-far field boundaries. Using a 20 dB threshold, we uncover new distances for elementary antennas and a consistent method to define non-spherical boundaries for antennas of any size or complexity relative to the wavelength.
Struggling with complex helical antenna designs for LoRa & ISM? AN-SOF overcomes limitations of traditional methods, enabling accurate simulations of 433 MHz spring helical antennas.
Overcome probe inductance and simplify your antenna designs with capacitive feeding. This study demonstrates how to utilize proximity coupling to achieve a perfect 50-Ohm match and 10 dBi gain. Validated against classic experimental benchmarks, our simulation shows how internal reactance cancellation enables wideband performance in microstrip patches without external matching networks.
Is your car antenna truly omnidirectional? Discover how vehicle geometry reshapes FM signals in this AN-SOF study of a 100 MHz monopole. We compare roof-mount and trunk-mount placements, revealing how induced surface currents and body diffraction create unexpected directional gain and reception bias.
Explore a compact, self-resonant pyramidal horn antenna designed for the 2.4 GHz WiFi band. This study challenges traditional aperture theory by demonstrating how an electrically small horn, with an axial length of just half a wavelength, can achieve a high gain of 13 dBi. Through AN-SOF wire-grid simulation, we detail the waveguide feed optimization and flare-angle geometry required to bridge the gap between idealized textbook formulas and practical, high-performance DIY antenna construction.
