How Can We Help?

Search for answers or browse our Knowledge Base.

The Antenna Lab | The Ham's Corner | Advanced RF Edge

Tag - microstrip

Articles covering the design, simulation, and applications of microstrip and patch antennas.

Articles

Rectangular Microstrip Patch Antennas: A Comparative Analysis of Transmission Line Theory and AN-SOF Numerical Results
This comprehensive study explores the design and electromagnetic behavior of the rectangular microstrip patch antenna, contrasting classical transmission line theory with AN-SOF numerical simulations. By evaluating resonance, input impedance, and the impact of finite vs. infinite substrates, the article details the specific areas where analytical formulas align with full-wave results and where complex phenomena like surface waves and mutual conductance necessitate advanced computational validation.
A Simple, Low-Cost Approach to Simulating Solid Wheel Antennas at 2.4 GHz
Explore a simple, low-cost method to simulate 2.4 GHz solid wheel antennas with reliable first-order accuracy and practical efficiency.
Simplified Modeling of Microstrip Antennas on Ungrounded Dielectric Substrates: A Practical First-Order Approach
Discover a practical first-order method for modeling microstrip antennas on ungrounded dielectric substrates with simplicity and ease.
High-Performance Impedance Matching in Microstrip Antennas: The Role of Capacitive Feeding
Overcome probe inductance and simplify your antenna designs with capacitive feeding. This study demonstrates how to utilize proximity coupling to achieve a perfect 50-Ohm match and 10 dBi gain. Validated against classic experimental benchmarks, our simulation shows how internal reactance cancellation enables wideband performance in microstrip patches without external matching networks.