How Can We Help?
Search for answers or browse our Knowledge Base.
Guides | Models | Validation | Book
-
Guides
-
-
- New Tools in AN-SOF: Selecting and Editing Wires in Bulk
- How to Speed Up Simulations in AN-SOF: Tips for Faster Results
- Enhancing Antenna Design Flexibility: Project Merging in AN-SOF
- AN-SOF Antenna Simulation Best Practices: Checking and Correcting Model Errors
- How to Adjust the Radiation Pattern Reference Point for Better Visualization
- H-Field Option in Preferences
-
- Can AI Design Antennas? Lessons from a 3-Iteration Yagi-Uda Experiment
- Modeling Common-Mode Currents in Coaxial Cables: A Hybrid Approach
- Beyond Analytical Formulas: Accurate Coil Inductance Calculation with AN-SOF
- Complete Workflow: Modeling, Feeding, and Tuning a 20m Band Dipole Antenna
- DIY Helix High Gain Directional Antenna: From Simulation to 3D Printing
- Design Guidelines for Skeleton Slot Antennas: A Simulation-Driven Approach
- Simplified Modeling for Microstrip Antennas on Ungrounded Dielectric Substrates: Accuracy Meets Simplicity
- Fast Modeling of a Monopole Supported by a Broadcast Tower
- Linking Log-Periodic Antenna Elements Using Transmission Lines
- AN-SOF Mastery: Adding Elevated Radials Quickly
- An Efficient Approach to Simulating Radiating Towers for Broadcasting Applications
- RF Techniques: Implicit Modeling and Equivalent Circuits for Baluns
-
- Understanding the Antenna Near Field: Key Concepts Every Ham Radio Operator Should Know
- Evaluating EMF Compliance - Part 1: A Guide to Far-Field RF Exposure Assessments
- Evaluating EMF Compliance - Part 2: Using Near-Field Calculations to Determine Exclusion Zones
- Wave Matching Coefficient: Defining the Practical Near-Far Field Boundary
- AN-SOF Data Export: A Guide to Streamlining Your Workflow
- Front-to-Rear and Front-to-Back Ratios: Applying Key Antenna Directivity Metrics
- Export Radiation Patterns to MSI Planet
- Export Radiation Patterns to Radio Mobile
- Scilab Script for Plotting Level Curves
- Adjusting the Color Bar in AN-3D Pattern
-
-
-
- Introducing AN-SOF 10.5 – Smarter Tools, Faster Workflow, Greater Precision
- Introducing the AN-SOF Engine: Power, Speed, and Flexibility for Antenna Simulation
- What’s New in AN-SOF 10? Smarter Tools for RF Professionals and Antenna Enthusiasts
- To Our Valued AN-SOF Customers and Users: Reflections, Milestones, and Future Plans
- AN-SOF 9.50 Release: Streamlining Polarization, Geometry, and EMF Calculations
- AN-SOF 9: Taking Antenna Design Further with New Feeder and Tuner Calculators
- AN-SOF Antenna Simulation Software - Version 8.90 Release Notes
- AN-SOF 8.70: Enhancing Your Antenna Design Journey
- Introducing AN-SOF 8.50: Enhanced Antenna Design & Simulation Software
- Get Ready for the Next Level of Antenna Design: AN-SOF 8.50 is Coming Soon!
- Explore the Cutting-Edge World of AN-SOF Antenna Simulation Software!
- Upgrade to AN-SOF 8.20 - Unleash Your Potential
- AN-SOF 8: Elevating Antenna Simulation to the Next Level
- New Release: AN-SOF 7.90
- AN-SOF 7.80 is ready!
- New AN-SOF User Guide
- New Release: AN-SOF 7.50
- AN-SOF 7.20 is ready!
- New Release :: AN-SOF 7.10 ::
- AN-SOF 7.0 is Here!
- New Release :: AN-SOF 6.40 ::
- New Release :: AN-SOF 6.20 ::
- Show All Articles (7) Collapse Articles
-
-
- Types of Wires
- Wire Attributes
- Wire Materials
- Enabling/Disabling Resistivity
- Enabling/Disabling Coating
- Cross-Section Equivalent Radius
- Exporting Wires
-
-
Models
-
- Download Examples
- Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
- Modeling a Center-Fed Cylindrical Antenna with AN-SOF
- Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
- Monopole Antennas Over Imperfect Ground: Modeling and Analysis with AN-SOF
- Modeling Helix Antennas in Axial Radiation Mode Using AN-SOF
- Step-by-Step: Modeling Basic Yagi-Uda Arrays for Beginners
- A Transmission Line
- An RLC Circuit
-
- Pi Day Special: A Short Dipole with Radiation Resistance of 3.14 Ohms
- Modeling a Super J-Pole: A Look Inside a 5-Element Collinear Antenna
- The 5-in-1 J-Pole Antenna Solution for Multiband Communications
- Simulating a Multiband Omnidirectional Dipole Antenna Design
- The Loop on Ground (LoG) Antenna: A Compact Solution for Directional Reception
- Precision Simulations with AN-SOF for Magnetic Loop Antennas
- Advantages of AN-SOF for Simulating 433 MHz Spring Helical Antennas for ISM & LoRa Applications
- Understanding the Folded Dipole: Structure, Impedance, and Simulation
- Radio Mast Above Wire Screen
- Experimenting with Half-Wave Square Loops: Simulation and Practical Insights
- Radar Cross Section and Reception Characteristics of a Passive Loop Antenna: A Simulation Study
- Monopole Above Earth Ground
- Design and Simulation of Short Top-Loaded Monopole Antennas for LF and MF Bands
- Half-Wave Dipole
- Dipole Antenna
-
- Efficient NOAA Satellite Signal Reception with the Quadrifilar Helix Antenna
- Inverted V Antenna
- Boosting Performance with Dual V Antennas: A Practical Design and Simulation
- Helical Antenna with Grid Reflector
- Helical Antenna with PEC Reflector
- 7-Element Yagi-Uda
- 5-Element Yagi-Uda
- 3-Element Yagi-Uda
-
- Exploring an HF Log-Periodic Sawtooth Array: Insights from Geometry to Simulation
- The Lazy-H Antenna: A 10-Meter Band Design Guide
- Extended Double Zepp (EDZ): A Phased Array Solution for Directional Antenna Applications
- Transmission Line Feeding in Antenna Design: Exploring the Four-Square Array
- Enhancing VHF Performance: The Dual Reflector Moxon Antenna for 145 MHz
- Building a Compact High-Performance UHF Array with AN-SOF: A 4-Element Biquad Design
- Building a Beam: Modeling a 5-Element 2m Band Quad Array
- A Closer Look at the HF Skeleton Slot Antenna
- The 17m Band 2-Element Delta Loop Beam: A Compact, High-Gain Antenna for DX Enthusiasts
- The Moxon-Yagi Dual-Band VHF/UHF Antenna for Superior Satellite Link Performance
- Broadside Dipole Array
- Log-Periodic Dipole Array
- Broadband Directional Antenna
- Log-Periodic Christmas Tree
-
- Nelder-Mead Optimization for Antenna Design Using the AN-SOF Engine and Scilab
- Evolving Better Antennas: A Genetic Algorithm Optimizer Using AN-SOF and Scilab
- Building Effective Cost Functions for Antenna Optimization: Weighting, Normalization, and Trade-offs
- Element Spacing Simulation Script for Yagi-Uda Antennas
- Automating 2-Element Quad Array Design: Scripting and Bulk Processing in AN-SOF
-
-
Validation
-
- Simple Dual Band Vertical Dipole for the 2m and 70cm Bands
- Linear Antenna Theory: Historical Approximations and Numerical Validation
- Validation of a Panel RBS Antenna with Dipole Radiators against IEC 62232 Standard
- Validating V Antennas: Directivity Analysis with AN-SOF
- Enhanced Methodology for Monopoles Above Radial Wire Ground Screens
- Validating Dipole Antenna Simulations: A Comparative Study with King-Middleton
- Dipole Gain and Radiation Resistance
- Convergence of the Dipole Input Impedance
-
Book
-
- 1.0 Table of Contents
- 1.1 Maxwell’s Equations and Electromagnetic Radiation
- 1.2 The Isotropic Radiator
- 1.3 Isotropic Antenna Arrays
- 1.4 The Hertzian Dipole
- 1.5 The Short Dipole – FREE SAMPLE
- 1.6 The Half-Wave Dipole
- 1.7 Thin Dipoles of Arbitrary Length
- 1.8 Ground Plane and Image Theory
- 1.9 The Hertzian Monopole
- 1.10 Quarter-Wave and General Monopoles
-
- 2.1 Radiation Pattern Fundamentals
- 2.2 Field Strength and Intensity Plots
- 2.3 Total Radiated Power
- 2.4 Radiation Resistance
- 2.5 Antenna Effective Length
- 2.6 Loss Resistance Modeling
- 2.7 Radiation Efficiency
- 2.8 Directivity and Gain
- 2.9 Beamwidth and Sidelobes
- 2.10 Feedpoint Impedance and Bandwidth
- 2.11 Receiving Mode Operation
- 2.12 Equivalent Circuits for TX/RX
- 2.13 The Reciprocity Principle
- 2.14 Effective Aperture and Gain
- 2.15 The Friis Transmission Equation
-
- 3.1 Cylindrical Wire Antennas
- 3.2 Feedpoint Resistance and Reactance
- 3.3 Calculating Input Impedance
- 3.4 Induced EMF Method
- 3.5 Hallén’s Integral Equation
- 3.6 Pocklington’s Integral Equation
- 3.7 Equivalent Radius for Non-Circular Wires
- 3.8 Impedance of Short Dipoles and Monopoles
- 3.9 Top-Loading for Short Monopoles
- 3.10 Mutual Impedance Between Wires
-
Category - FAQs
Frequently Asked Questions about licensing, technical queries, and troubleshooting AN-SOF.
Articles
This Knowledge Base and associated software are provided “as is” without warranty of any kind, expressed or implied. Golden Engineering LLC disclaims all warranties, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. Golden Engineering LLC does not warrant that: Golden Engineering LLC is not liable for […]
Sub Categories
Provides the latest new features and improvements incorporated in AN-SOF.
We’re excited to announce the release of AN-SOF Antenna Simulator version 10.5, bringing a powerful set of new features and enhancements designed to improve your workflow and elevate your modeling precision.
With the release of AN-SOF PRO 10, we’re excited to introduce the AN-SOF Engine – a standalone console application that can be integrated with other software tools.
We are excited to announce the release of AN-SOF 10, the latest version of our powerful antenna simulation software. Designed with the needs of RF engineers, ham radio enthusiasts, and academic professionals in mind, AN-SOF 10 brings a host of new features and enhancements to streamline your antenna design and analysis workflows.
As we close 2024, I'm filled with gratitude for 12 years of AN-SOF's innovation. From dynamic simulations to enhanced visualizations, we've made great strides. Exciting features await in 2025, including a new source model and a learning platform. Thank you for your support. Happy holidays and a wonderful 2025!
We’re thrilled to announce AN-SOF 9.50, packed with user-requested enhancements. Improved geometry input, simplified polarization analysis, and new EMF compliance tools make antenna design easier and more precise than ever. Upgrade your design process with AN-SOF 9.50!
Discover the advanced features of AN-SOF 9, the latest version that takes antenna design to the next level with groundbreaking Feeder and Tuner Calculators.
Exciting update! AN-SOF 8.90 is here with features like "Segments per Wavelength," enhanced wire scaling, TL command import/export, and faster current distribution algorithms. Elevate your antenna simulations!
Experience antenna design at its best with AN-SOF 8.70, your comprehensive tool for simulation mastery.
Embrace the antenna revolution with AN-SOF 8.50! Unleash its advanced features: Transmission Line models, expanded power budget, and precise far-field calculation. Free trial available!
Get ready for the future of antenna design. AN-SOF 8.50 brings enhanced features like Transmission Line models, extended power budget, and improved far-field calculation. Stay tuned for the release!
This quick overview document provides a concise introduction to the capabilities of AN-SOF, designed to revolutionize the way you approach antenna design.
AN-SOF has released its latest version, 8.20, which brings significant enhancements to improve the software's accessibility and performance.
New Plots tab where we can quickly see the input impedance, VSWR, gain, Front-to-Rear, and Front-to-Back ratios as a function of frequency, with various visualization controls (grids, points, markers, etc.).
This version of AN-SOF has new functions and options: ARRL-style scale in polar plots. Radiation pattern slices in decibels can be displayed...
New version of Antenna Simulation Software: AN-SOF 7.8.
Explore the new AN-SOF User Guide >, where you will find detailed information about its many features, as well as step-by-step examples and tips to help you quickly move forward with your antenna modeling projects.
New version of Antenna Simulation Software: AN-SOF 7.50.
See how the radiation pattern changes with frequency in AN-3D Pattern. The near field heatmap and current distribution can also be viewed dynamically by changing the operating frequency.
AN-SOF 7.10 is now available for download! Access the input impedance and VSWR easily by going to the Main menu > Results. This avoids selecting the segment where the source is located to access the input impedance.
AN-SOF 7.0 is Here! Run bulk simulations and process multiple input files with just one click. We have chosen the NEC format for the input files as it is a standard adopted by many users. Forget about running the simulations one by one, run them all at once.
New Release :: AN-SOF 6.40 :: Tabular input of linear wires as well as sources and loads. List of recently open projects in the File menu. Zoom in and out by rotating the mouse wheel.
New Release :: AN-SOF 6.20 :: Radiation patterns plotted in AN-Polar can now be exported as *.ant files. The *.ant format can then be imported into the Radio Mobile propagation software. Exportation of linear wires in DXF format has been added.
+ 13 Articles
Show All Articles