Search for answers or browse our Knowledge Base.
Guides | Models | Validation | Blog
-
Guides
-
-
- Evaluating EMF Compliance - Part 2: Using Near-Field Calculations to Determine Exclusion Zones
- Beyond Analytical Formulas: Accurate Coil Inductance Calculation with AN-SOF
- Complete Workflow: Modeling, Feeding, and Tuning a 20m Band Dipole Antenna
- DIY Helix High Gain Directional Antenna: From Simulation to 3D Printing
- Evaluating EMF Compliance - Part 1: A Guide to Far-Field RF Exposure Assessments
- Design Guidelines for Skeleton Slot Antennas: A Simulation-Driven Approach
- Simplified Modeling for Microstrip Antennas on Ungrounded Dielectric Substrates: Accuracy Meets Simplicity
- Fast Modeling of a Monopole Supported by a Broadcast Tower
- Linking Log-Periodic Antenna Elements Using Transmission Lines
- Wave Matching Coefficient: Defining the Practical Near-Far Field Boundary
- AN-SOF Mastery: Adding Elevated Radials Quickly
- Enhancing Antenna Design: Project Merging in AN-SOF
- On the Modeling of Radio Masts
- RF Techniques: Implicit Modeling and Equivalent Circuits for Baluns
- AN-SOF Antenna Simulation Best Practices: Checking and Correcting Model Errors
-
-
- AN-SOF 9.50 Release: Streamlining Polarization, Geometry, and EMF Calculations
- AN-SOF 9: Taking Antenna Design Further with New Feeder and Tuner Calculators
- AN-SOF Antenna Simulation Software - Version 8.90 Release Notes
- AN-SOF 8.70: Enhancing Your Antenna Design Journey
- Introducing AN-SOF 8.50: Enhanced Antenna Design & Simulation Software
- Get Ready for the Next Level of Antenna Design: AN-SOF 8.50 is Coming Soon!
- Explore the Cutting-Edge World of AN-SOF Antenna Simulation Software!
- Upgrade to AN-SOF 8.20 - Unleash Your Potential
- AN-SOF 8: Elevating Antenna Simulation to the Next Level
- New Release: AN-SOF 7.90
- AN-SOF 7.80 is ready!
- New AN-SOF User Guide
- New Release: AN-SOF 7.50
- AN-SOF 7.20 is ready!
- New Release :: AN-SOF 7.10 ::
- AN-SOF 7.0 is Here!
- New Release :: AN-SOF 6.40 ::
- New Release :: AN-SOF 6.20 ::
- Show All Articles (3) Collapse Articles
-
-
-
-
Models
-
- Download Examples
- Modeling a Center-Fed Cylindrical Antenna with AN-SOF
- Yagi-Uda Array
- Monopole Over Real Ground
- Helix Antenna in Axial Mode
- Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
- A Transmission Line
- An RLC Circuit
- Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
-
- Modeling a Super J-Pole: A Look Inside a 5-Element Collinear Antenna
- Simulating the Ingenious Multiband Omnidirectional Dipole Antenna Design
- The Loop on Ground (LoG) Antenna: A Compact Solution for Directional Reception
- Precision Simulations with AN-SOF for Magnetic Loop Antennas
- Advantages of AN-SOF for Simulating 433 MHz Spring Helical Antennas for ISM & LoRa Applications
- Radio Mast Above Wire Screen
- Square Loop Antenna
- Receiving Loop Antenna
- Monopole Above Earth Ground
- Top-Loaded Short Monopole
- Half-Wave Dipole
- Folded Dipole
- Dipole Antenna
- The 5-in-1 J-Pole Antenna Solution for Multiband Communications
-
- The Lazy-H Antenna: A 10-Meter Band Design Guide
- Extended Double Zepp (EDZ): A Phased Array Solution for Directional Antenna Applications
- Transmission Line Feeding for Antennas: The Four-Square Array
- Log-Periodic Christmas Tree
- Enhancing VHF Performance: The Dual Reflector Moxon Antenna for 145 MHz
- Building a Compact High-Performance UHF Array with AN-SOF: A 4-Element Biquad Design
- Building a Beam: Modeling a 5-Element 2m Band Quad Array
- Broadside Dipole Array
- Log-Periodic Dipole Array
- Broadband Directional Antenna
- A Closer Look at the HF Skeleton Slot Antenna
- The 17m Band 2-Element Delta Loop Beam: A Compact, High-Gain Antenna for DX Enthusiasts
- Enhancing Satellite Links: The Moxon-Yagi Dual Band VHF/UHF Antenna
-
-
Validation
-
-
- Simple Dual Band Vertical Dipole for the 2m and 70cm Bands
- Linear Antenna Theory: Historical Approximations and Numerical Validation
- Validating Panel RBS Antenna with Dipole Radiators against IEC 62232
- Validating V Antennas: Directivity Analysis with AN-SOF
- Enhanced Methodology for Monopoles Above Radial Wire Ground Screens
- Dipole Gain and Radiation Resistance
- Convergence of the Dipole Input Impedance
- Validating Dipole Antenna Simulations: A Comparative Study with King-Middleton
-
Monopole Over Real Ground
A monopole is a vertical element connected to a ground plane and with the feed point at its base. In this example we will simulate a radio mast on an imperfect ground, which is used for broadcasting in the LF and MF bands.
Step 1 | Setup
Go to the Setup tabsheet and set an operating frequency of 3 MHz in the Frequency panel. Then, go to the Environment panel > Ground Plane box and select Real, Fig. 1. Select Radial wire ground screen and the Poor ground options. Note that the soil conductivity will automatically be set to 0.001 S/m and the permittivity (dielectric constant) to 5.
Finally, set the number of radials, their length and radius as shown in Fig. 1. In radio masts it is customary to use a constant input power as a reference, for example 1 kW. Go to the Excitation panel, select Discrete Sources, Set Input Power and enter 1,000 W, Fig. 2.
Step 2 | Draw
Right click on the workspace and select Line from the displayed pop-up menu >. Specify a vertical wire 25 m in height (1/4 of a wavelength at 3 MHz) and with a triangular cross section as shown in Fig. 3. Although the recommended minimum number of segments is 3, we will divide the wire into 10 segments to obtain greater resolution in the current distribution. Note that the wire will be automatically connected to the ground at the origin (0,0,0).
Right click on the wire, select the Source/Load command from the pop-up menu and put a voltage source on the first segment, so the source will be connected to the base of the mast. Refer to Adding Sources >.
Step 3 | Run
Click on the Run Currents and Far-Field (F11) button on the toolbar. After the calculations are complete, click on the Far-Field 3D Plot button on the toolbar to display the radiation pattern. Choose Radiation Pattern under the Plot menu in AN-3D Pattern to plot the normalized radiation pattern (dimensionless). Then, choose the Radiation Pattern [dB] option to see the pattern in decibel scale. Note that the far field has a null on the xy-plane due to the losses in the ground plane, Fig. 4.
The antenna efficiency is the radiated to the input power ratio. Go to the Results tabsheet to see the input impedance, VSWR, Directivity, Gain, and Efficiency, Fig. 5. Note that the efficiency is low and therefore the gain too since most of the input power is lost to the ground. In this example we have chosen a Poor soil. Try different soils and increasing the number of radial wires and their length to improve the antenna efficiency.