How Can We Help?

Search for answers or browse our Knowledge Base.

Category - Step By Step

Dive into detailed, step-by-step examples that guide users through various AN-SOF functionalities and workflows.

Articles

In the directory where AN-SOF was installed there is a folder called “Examples” which contains many examples of antennas and wire structures. The default directory is C:\AN-SOF X\Examples where X is the AN-SOF version. You can also download the examples from here >. We constantly upload files with examples on our website. You will find […]
Learn how to simulate a center-fed cylindrical antenna using AN-SOF software. This step-by-step guide covers setup, geometry creation, simulation, and result analysis. Understand dipole characteristics through practical examples.
After learning how to simulate a Cylindrical Antenna >, we are ready to build a dipole array. A 3-element Yagi-Uda antenna, consisting of a reflector, a driven element, and a director, is shown in Fig. 1, where the coordinates of the wire ends are indicated in meters. Step 1 | Setup Go to the Setup […]
A monopole is a vertical element connected to a ground plane and with the feed point at its base. In this example we will simulate a radio mast on an imperfect ground, which is used for broadcasting in the LF and MF bands.
The helix is a good example where we need curved segments to describe the geometry of the antenna. When the length of the helix is of the order of or greater than the wavelength, it can work in the so-called "axial mode".
This step-by-step guide empowers you to simulate circular loop antennas in AN-SOF. We'll configure the software, define loop geometry, and explore how its size relative to wavelength affects radiation patterns and input resistance. Gain valuable insights into this fundamental antenna type!
Two-wire transmission lines can be modeled explicitly in AN-SOF. In this example, the line will have a single wire but there will be a ground plane below it, so we have the mirror image of the wire as the return of the line.
The ability of AN-SOF to simulate at extremely low frequencies can be demonstrated with a model of an RLC circuit that will resonate at only 800 Hz, so the wavelength is 375 km!
Discover 5 antenna models with less than 50 segments in AN-SOF Trial Version. These examples showcase the capabilities of our software for antenna modeling and design, allowing you to evaluate its features for your projects.