How Can We Help?
Search for answers or browse our Knowledge Base.
Guides | Models | Validation | Blog
-
Guides
-
-
- Beyond Analytical Formulas: Accurate Coil Inductance Calculation with AN-SOF
- Complete Workflow: Modeling, Feeding, and Tuning a 20m Band Dipole Antenna
- DIY Helix High Gain Directional Antenna: From Simulation to 3D Printing
- Evaluating EMF Compliance - Part 1: A Guide to Far-Field RF Exposure Assessments
- Design Guidelines for Skeleton Slot Antennas: A Simulation-Driven Approach
- Simplified Modeling for Microstrip Antennas on Ungrounded Dielectric Substrates: Accuracy Meets Simplicity
- Fast Modeling of a Monopole Supported by a Broadcast Tower
- Linking Log-Periodic Antenna Elements Using Transmission Lines
- Wave Matching Coefficient: Defining the Practical Near-Far Field Boundary
- AN-SOF Mastery: Adding Elevated Radials Quickly
- Enhancing Antenna Design: Project Merging in AN-SOF
- On the Modeling of Radio Masts
- The Equivalent Circuit of a Balun
- AN-SOF Antenna Simulation Best Practices: Checking and Correcting Model Errors
-
-
- AN-SOF 9: Taking Antenna Design Further with New Feeder and Tuner Calculators
- AN-SOF Antenna Simulation Software - Version 8.90 Release Notes
- AN-SOF 8.70: Enhancing Your Antenna Design Journey
- Introducing AN-SOF 8.50: Enhanced Antenna Design & Simulation Software
- Get Ready for the Next Level of Antenna Design: AN-SOF 8.50 is Coming Soon!
- Explore the Cutting-Edge World of AN-SOF Antenna Simulation Software!
- Upgrade to AN-SOF 8.20 - Unleash Your Potential
- AN-SOF 8: Elevating Antenna Simulation to the Next Level
- New Release: AN-SOF 7.90
- AN-SOF 7.80 is ready!
- New AN-SOF User Guide
- New Release: AN-SOF 7.50
- AN-SOF 7.20 is ready!
- New Release :: AN-SOF 7.10 ::
- AN-SOF 7.0 is Here!
- New Release :: AN-SOF 6.40 ::
- New Release :: AN-SOF 6.20 ::
- Show All Articles (2) Collapse Articles
-
-
-
-
Models
-
- Download Examples
- Modeling a Center-Fed Cylindrical Antenna with AN-SOF
- Yagi-Uda Array
- Monopole Over Real Ground
- Helix Antenna in Axial Mode
- Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
- A Transmission Line
- An RLC Circuit
- Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
-
- Modeling a Super J-Pole: A Look Inside a 5-Element Collinear Antenna
- Simulating the Ingenious Multiband Omnidirectional Dipole Antenna Design
- The Loop on Ground (LoG): A Compact Receiving Antenna with Directional Capabilities
- Precision Simulations with AN-SOF for Magnetic Loop Antennas
- Advantages of AN-SOF for Simulating 433 MHz Spring Helical Antennas for ISM & LoRa Applications
- Radio Mast Above Wire Screen
- Square Loop Antenna
- Receiving Loop Antenna
- Monopole Above Earth Ground
- Top-Loaded Short Monopole
- Half-Wave Dipole
- Folded Dipole
- Dipole Antenna
- The 5-in-1 J-Pole Antenna Solution for Multiband Communications
-
- The Lazy-H Antenna: A 10-Meter Band Design Guide
- Extended Double Zepp (EDZ): A Phased Array Solution for Directional Antenna Applications
- Transmission Line Feeding for Antennas: The Four-Square Array
- Log-Periodic Christmas Tree
- Enhancing VHF Performance: The Dual Reflector Moxon Antenna for 145 MHz
- Building a Compact High-Performance UHF Array with AN-SOF: A 4-Element Biquad Design
- Building a Beam: Modeling a 5-Element 2m Band Quad Array
- Broadside Dipole Array
- Log-Periodic Dipole Array
- Broadband Directional Antenna
- A Closer Look at the HF Skeleton Slot Antenna
- The 17m Band 2-Element Delta Loop Beam: A Compact, High-Gain Antenna for DX Enthusiasts
- Enhancing Satellite Links: The Moxon-Yagi Dual Band VHF/UHF Antenna
-
-
Validation
-
-
- Simple Dual Band Vertical Dipole for the 2m and 70cm Bands
- Linear Antenna Theory: Historical Approximations and Numerical Validation
- Validating Panel RBS Antenna with Dipole Radiators against IEC 62232
- Directivity of V Antennas
- Enhanced Methodology for Monopoles Above Radial Wire Ground Screens
- Dipole Gain and Radiation Resistance
- Convergence of the Dipole Input Impedance
- Impedance of Cylindrical Antennas
-
Category - Wire Antennas
Discover various wire antenna designs, including dipoles, monopoles, loops, and short antennas.
Articles
Simulating a Super J-Pole: A 2m Antenna Analysis. This article describes a 5-element collinear antenna design for the 2m band, its radiation pattern, VSWR, and key components for optimal performance.
Delve into the virtual realm of an ingenious multiband omnidirectional dipole antenna. Explore its design intricacies through simulation.
The Loop on Ground (LoG): A compact receiving antenna with a cardioid-shaped radiation pattern, achieving directionality through clever grounding and monopole design.
Explore dual-loop magnetic antenna design and simulation with AN-SOF. Model performance at five frequencies, showcasing radiation patterns, current distributions, and tuning values. Automated bulk simulations streamline the process.
Struggling with complex helical antenna designs for LoRa & ISM? AN-SOF overcomes limitations of traditional methods, enabling accurate simulations of 433 MHz spring helical antennas.
Radiating towers or radio masts can be modeled in AN-SOF with a high degree of detail. This example shows a quarter-wave monopole antenna connected to a radial wire ground screen on a real ground plane.
The total length of the loop is about 0.4 wavelengths, so the current distribution shows a semi-cycle of a sine function.
Frequency sweep simulation of a receiving circular loop antenna. The loop is modeled using conformal segments, which exactly follow the contour of the antenna geometry.
The monopole is used for AM (Amplitude Modulation) radio transmissions. The far-field radiation pattern in the Fraunhofer zone is distorted due to the finite conductivity of the soil.
The antenna is composed of four vertical monopoles over ground. Each monopole is fed at its base by a voltage source of the same amplitude and phase as the others.
Center-fed half-wave dipole antenna at 300 MHz. The wavelength is close to 1 meter, so the dipole length equals 0.5 meters.
Simulation of a folded dipole using curved wires at the dipole ends. The curved part is modeled exactly using conformal segments.
Frequency sweep simulation of a cylindrical dipole antenna. The results show how the current distribution along the wire approaches a sine function.
Experience versatile communication with this 5-in-1 J-Pole Antenna – your go-to solution for multiband excellence.
+ 4 Articles
Show All Articles