Search for answers or browse our Knowledge Base.
Guides | Models | Validation | Blog
-
Guides
-
-
- Modeling Common-Mode Currents in Coaxial Cables: A Hybrid Approach
- Evaluating EMF Compliance - Part 2: Using Near-Field Calculations to Determine Exclusion Zones
- Beyond Analytical Formulas: Accurate Coil Inductance Calculation with AN-SOF
- Complete Workflow: Modeling, Feeding, and Tuning a 20m Band Dipole Antenna
- DIY Helix High Gain Directional Antenna: From Simulation to 3D Printing
- Evaluating EMF Compliance - Part 1: A Guide to Far-Field RF Exposure Assessments
- Design Guidelines for Skeleton Slot Antennas: A Simulation-Driven Approach
- Simplified Modeling for Microstrip Antennas on Ungrounded Dielectric Substrates: Accuracy Meets Simplicity
- Fast Modeling of a Monopole Supported by a Broadcast Tower
- Linking Log-Periodic Antenna Elements Using Transmission Lines
- Wave Matching Coefficient: Defining the Practical Near-Far Field Boundary
- AN-SOF Mastery: Adding Elevated Radials Quickly
- Enhancing Antenna Design: Project Merging in AN-SOF
- On the Modeling of Radio Masts
- RF Techniques: Implicit Modeling and Equivalent Circuits for Baluns
- AN-SOF Antenna Simulation Best Practices: Checking and Correcting Model Errors
- Show All Articles (1) Collapse Articles
-
-
- To Our Valued AN-SOF Customers and Users: Reflections, Milestones, and Future Plans
- AN-SOF 9.50 Release: Streamlining Polarization, Geometry, and EMF Calculations
- AN-SOF 9: Taking Antenna Design Further with New Feeder and Tuner Calculators
- AN-SOF Antenna Simulation Software - Version 8.90 Release Notes
- AN-SOF 8.70: Enhancing Your Antenna Design Journey
- Introducing AN-SOF 8.50: Enhanced Antenna Design & Simulation Software
- Get Ready for the Next Level of Antenna Design: AN-SOF 8.50 is Coming Soon!
- Explore the Cutting-Edge World of AN-SOF Antenna Simulation Software!
- Upgrade to AN-SOF 8.20 - Unleash Your Potential
- AN-SOF 8: Elevating Antenna Simulation to the Next Level
- New Release: AN-SOF 7.90
- AN-SOF 7.80 is ready!
- New AN-SOF User Guide
- New Release: AN-SOF 7.50
- AN-SOF 7.20 is ready!
- New Release :: AN-SOF 7.10 ::
- AN-SOF 7.0 is Here!
- New Release :: AN-SOF 6.40 ::
- New Release :: AN-SOF 6.20 ::
- Show All Articles (4) Collapse Articles
-
-
-
-
Models
-
- Download Examples
- Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
- Modeling a Center-Fed Cylindrical Antenna with AN-SOF
- Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
- Monopole Over Real Ground
- Helix Antenna in Axial Mode
- Yagi-Uda Array
- A Transmission Line
- An RLC Circuit
-
- Modeling a Super J-Pole: A Look Inside a 5-Element Collinear Antenna
- Simulating the Ingenious Multiband Omnidirectional Dipole Antenna Design
- The Loop on Ground (LoG) Antenna: A Compact Solution for Directional Reception
- Precision Simulations with AN-SOF for Magnetic Loop Antennas
- Advantages of AN-SOF for Simulating 433 MHz Spring Helical Antennas for ISM & LoRa Applications
- Radio Mast Above Wire Screen
- Square Loop Antenna
- Receiving Loop Antenna
- Monopole Above Earth Ground
- Top-Loaded Short Monopole
- Half-Wave Dipole
- Folded Dipole
- Dipole Antenna
- The 5-in-1 J-Pole Antenna Solution for Multiband Communications
-
- The Lazy-H Antenna: A 10-Meter Band Design Guide
- Extended Double Zepp (EDZ): A Phased Array Solution for Directional Antenna Applications
- Transmission Line Feeding for Antennas: The Four-Square Array
- Log-Periodic Christmas Tree
- Enhancing VHF Performance: The Dual Reflector Moxon Antenna for 145 MHz
- Building a Compact High-Performance UHF Array with AN-SOF: A 4-Element Biquad Design
- Building a Beam: Modeling a 5-Element 2m Band Quad Array
- Broadside Dipole Array
- Log-Periodic Dipole Array
- Broadband Directional Antenna
- A Closer Look at the HF Skeleton Slot Antenna
- The 17m Band 2-Element Delta Loop Beam: A Compact, High-Gain Antenna for DX Enthusiasts
- Enhancing Satellite Links: The Moxon-Yagi Dual Band VHF/UHF Antenna
-
-
Validation
-
-
- Simple Dual Band Vertical Dipole for the 2m and 70cm Bands
- Linear Antenna Theory: Historical Approximations and Numerical Validation
- Validating Panel RBS Antenna with Dipole Radiators against IEC 62232
- Validating V Antennas: Directivity Analysis with AN-SOF
- Enhanced Methodology for Monopoles Above Radial Wire Ground Screens
- Dipole Gain and Radiation Resistance
- Convergence of the Dipole Input Impedance
- Validating Dipole Antenna Simulations: A Comparative Study with King-Middleton
-
Running a Bulk Simulation
AN-SOF is capable of importing a sequence of input files to obtain a corresponding sequence of output files, all without requiring any user intervention during the process. The input files must adhere to the NEC format and have a .nec extension. The supported NEC commands for importing wires are described here: Importing Wires.
The output data consists of power budget or RCS (Radar Cross Section), input impedances, far field, and near fields, all provided in CSV format. For each NEC input file, AN-SOF generates an individual project containing .emm and .wre files (see File Formats). This way, each project can be opened separately once the bulk simulation is completed.
To initiate a bulk simulation, navigate to the main menu and choose Run > Run Bulk Simulation. A prompt will appear, asking whether you want to save the changes in the current project, as the bulk simulation requires closing the currently open project. Subsequently, a dialog box will be displayed, allowing you to select a directory and the input .nec files. Upon selecting the desired files and clicking the “Open” button, the bulk simulation will commence, with the input files being imported and computed one after another in alphabetic order.
For instance, if we consider an input file named “InputFile.nec,” the following files will be generated:
Files of the AN-SOF project
InputFile.emm > main file of the project (it can be opened with AN-SOF)
InputFile.wre > geometry data (wires, segments, connections)
InputFile.txt > comments
InputFile.cur > current distribution
InputFile.pwr > input and radiated powers, directivity, gain, etc.
InputFile.the > Theta component of the far field
InputFile.phi > Phi component of the far field
InputFile.nef > near electric field
InputFile.nhf > near magnetic field
Output CSV Files with Results
InputFile_PowerBudget.csv > input and radiated power, efficiency, gain, etc.
InputFile_Zin.csv > input impedances
InputFile_FarFieldX.csv > E-theta and E-phi far field components
InputFile_EFieldX.csv > near electric field components
InputFile_HFieldX.csv > near magnetic field components
where “X” represents the frequency in Hz (e.g., X = 300000000 for a frequency of 300 MHz). Consequently, a FarField, EField, and HField file will be generated for each frequency if a frequency sweep simulation has been configured.
Bulk simulations serve the purpose of automating the calculation process for multiple NEC files, even if they are not directly related, eliminating the need for manual calculations file by file. Conversely, they are also useful for sequentially running calculations on NEC files generated with varying geometric parameters in an antenna. Subsequently, the results can be analyzed by reading data from the generated CSV files.
For instance, you can create a script to generate a sequence of NEC files for a Yagi-Uda antenna, where the spacing between its elements varies. To understand how to accomplish this and read the output data from the CSV files, you can refer to the following link: Element Spacing Simulation Script for Yagi-Uda Antennas.