How Can We Help?
Search for answers or browse our Knowledge Base.
Tag - directional
Articles covering directional antenna models and their applications.
Articles
High-Gain Biquad Antenna with Planar Reflector: Analysis and Applications for the 866.5 MHz ISM Band
Discover the design and performance characteristics of a high-gain Biquad antenna with a planar reflector for the 866.5 MHz ISM band. This AN-SOF analysis details the antenna's 10.5 dBi gain, 10% impedance bandwidth, and exceptional beam symmetry, providing a professional-grade directional solution for LoRaWAN, UHF RFID, and long-range telemetry applications.
This comprehensive study explores the design and electromagnetic behavior of the rectangular microstrip patch antenna, contrasting classical transmission line theory with AN-SOF numerical simulations. By evaluating resonance, input impedance, and the impact of finite vs. infinite substrates, the article details the specific areas where analytical formulas align with full-wave results and where complex phenomena like surface waves and mutual conductance necessitate advanced computational validation.
This article explores the design and analysis of log-periodic sawtooth arrays (LPSA) for HF communications. It covers their geometric principles, frequency-independent characteristics, and demonstrates how AN-SOF simulation software models these antennas, providing valuable insights into their performance and behavior.
In this article, we dive deep into near-field calculations to establish RF exclusion zones. By understanding near-field and far-field regions, occupational vs. public exposure, health impacts, and practical methods, we ensure compliance with EMF guidelines and safeguard human health.
We are happy to share an interesting project by one of our AN-SOF users: @PoweredMeshtasticEurope. He demonstrates how to build your own helix high gain directional antenna for the Meshtastic frequency range, from theory to reality.
The Extended Double Zepp (EDZ) antenna offers higher gain than a half-wave dipole, but matching to 50-Ohm coax is difficult. This article explores a phased array design using two EDZs for directional radio transmission, achieving good gain and easier impedance matching.
In today's wireless world, ensuring Electromagnetic Field (EMF) compliance is crucial for protecting individuals from potential harmful effects of RF exposure. Join us as we explore the influence of antenna configurations, ground planes, and feed lines on far-field EIRP values, ensuring you possess the tools to navigate the complexities of EMF compliance effectively.
Explore the Four-Square Array: a phased array using six transmission lines in its feeding system. Perfect for directional control, it combines simplicity and performance for RF engineers, ham operators, and antenna designers.
Understand the difference between Front-to-Rear (F/R) and Front-to-Back (F/B) ratios, key metrics for antenna directivity. Learn how to calculate and interpret these values using AN-SOF software. Improve your antenna designs with this essential knowledge.
The Loop on Ground (LoG) antenna offers a compact solution for directional reception with a cardioid radiation pattern. This article explores its design and highlights the efficiency achieved through the Conformal Method of Moments (CMoM).
The Quadrifilar Helix antenna (QFH or QHA), with its unique design and circular polarization, ensures efficient NOAA satellite signal reception. This article explores the history, key characteristics, and practical modeling of QFH antennas using AN-SOF, providing valuable insights for RF engineers and enthusiasts.
This article validates AN-SOF's results against established formulas for V antennas, highlighting its advanced modeling capabilities. We explore optimal angles, directivity enhancements, and precise calculations, making AN-SOF a powerful tool for RF engineers, ham radio enthusiasts, and antenna designers.
Discover the Dual Reflector Moxon Antenna at 145 MHz (2m band): Amplified Gain and Enhanced Performance for VHF Enthusiasts.
Need a compact directional antenna for your UHF needs? This 4-element Biquad antenna, designed with AN-SOF, packs a powerful punch in a relatively small space. Perfect for UHF applications where space is at a premium!
AN-SOF simulations of axial-mode helical antennas closely match John D. Kraus’s classic measurements for gain and VSWR, confirming its accuracy. Using the Conformal Method of Moments, AN-SOF models true helix curvature, delivering reliable predictions for high-gain circularly polarized designs.
+ 12 Articles
Show All Articles
