Search for answers or browse our Knowledge Base.
Guides | Models | Validation | Blog
-
Guides
-
-
- Evaluating EMF Compliance - Part 2: Using Near-Field Calculations to Determine Exclusion Zones
- Beyond Analytical Formulas: Accurate Coil Inductance Calculation with AN-SOF
- Complete Workflow: Modeling, Feeding, and Tuning a 20m Band Dipole Antenna
- DIY Helix High Gain Directional Antenna: From Simulation to 3D Printing
- Evaluating EMF Compliance - Part 1: A Guide to Far-Field RF Exposure Assessments
- Design Guidelines for Skeleton Slot Antennas: A Simulation-Driven Approach
- Simplified Modeling for Microstrip Antennas on Ungrounded Dielectric Substrates: Accuracy Meets Simplicity
- Fast Modeling of a Monopole Supported by a Broadcast Tower
- Linking Log-Periodic Antenna Elements Using Transmission Lines
- Wave Matching Coefficient: Defining the Practical Near-Far Field Boundary
- AN-SOF Mastery: Adding Elevated Radials Quickly
- Enhancing Antenna Design: Project Merging in AN-SOF
- On the Modeling of Radio Masts
- RF Techniques: Implicit Modeling and Equivalent Circuits for Baluns
- AN-SOF Antenna Simulation Best Practices: Checking and Correcting Model Errors
-
-
- AN-SOF 9.50 Release: Streamlining Polarization, Geometry, and EMF Calculations
- AN-SOF 9: Taking Antenna Design Further with New Feeder and Tuner Calculators
- AN-SOF Antenna Simulation Software - Version 8.90 Release Notes
- AN-SOF 8.70: Enhancing Your Antenna Design Journey
- Introducing AN-SOF 8.50: Enhanced Antenna Design & Simulation Software
- Get Ready for the Next Level of Antenna Design: AN-SOF 8.50 is Coming Soon!
- Explore the Cutting-Edge World of AN-SOF Antenna Simulation Software!
- Upgrade to AN-SOF 8.20 - Unleash Your Potential
- AN-SOF 8: Elevating Antenna Simulation to the Next Level
- New Release: AN-SOF 7.90
- AN-SOF 7.80 is ready!
- New AN-SOF User Guide
- New Release: AN-SOF 7.50
- AN-SOF 7.20 is ready!
- New Release :: AN-SOF 7.10 ::
- AN-SOF 7.0 is Here!
- New Release :: AN-SOF 6.40 ::
- New Release :: AN-SOF 6.20 ::
- Show All Articles (3) Collapse Articles
-
-
-
-
Models
-
- Download Examples
- Modeling a Center-Fed Cylindrical Antenna with AN-SOF
- Yagi-Uda Array
- Monopole Over Real Ground
- Helix Antenna in Axial Mode
- Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
- A Transmission Line
- An RLC Circuit
- Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
-
- Modeling a Super J-Pole: A Look Inside a 5-Element Collinear Antenna
- Simulating the Ingenious Multiband Omnidirectional Dipole Antenna Design
- The Loop on Ground (LoG): A Compact Receiving Antenna with Directional Capabilities
- Precision Simulations with AN-SOF for Magnetic Loop Antennas
- Advantages of AN-SOF for Simulating 433 MHz Spring Helical Antennas for ISM & LoRa Applications
- Radio Mast Above Wire Screen
- Square Loop Antenna
- Receiving Loop Antenna
- Monopole Above Earth Ground
- Top-Loaded Short Monopole
- Half-Wave Dipole
- Folded Dipole
- Dipole Antenna
- The 5-in-1 J-Pole Antenna Solution for Multiband Communications
-
- The Lazy-H Antenna: A 10-Meter Band Design Guide
- Extended Double Zepp (EDZ): A Phased Array Solution for Directional Antenna Applications
- Transmission Line Feeding for Antennas: The Four-Square Array
- Log-Periodic Christmas Tree
- Enhancing VHF Performance: The Dual Reflector Moxon Antenna for 145 MHz
- Building a Compact High-Performance UHF Array with AN-SOF: A 4-Element Biquad Design
- Building a Beam: Modeling a 5-Element 2m Band Quad Array
- Broadside Dipole Array
- Log-Periodic Dipole Array
- Broadband Directional Antenna
- A Closer Look at the HF Skeleton Slot Antenna
- The 17m Band 2-Element Delta Loop Beam: A Compact, High-Gain Antenna for DX Enthusiasts
- Enhancing Satellite Links: The Moxon-Yagi Dual Band VHF/UHF Antenna
-
-
Validation
-
-
- Simple Dual Band Vertical Dipole for the 2m and 70cm Bands
- Linear Antenna Theory: Historical Approximations and Numerical Validation
- Validating Panel RBS Antenna with Dipole Radiators against IEC 62232
- Directivity of V Antennas
- Enhanced Methodology for Monopoles Above Radial Wire Ground Screens
- Dipole Gain and Radiation Resistance
- Convergence of the Dipole Input Impedance
- Validating Dipole Antenna Simulations: A Comparative Study with King-Middleton
-
Grid/Surface Attributes
The Attributes page is part of the Draw dialog box for various wire grids and solid surface types. As shown in Fig. 1, this example illustrates the Attributes page for the Plate, but note that all grids and surfaces share the same Attributes page.
To select between a wire grid or a solid surface, refer to the “Cross-Section” field below. Wire grids consist of wires with a specified circular cross-section, leaving gaps between them, while solid surfaces use flat wires whose width is automatically adjusted to cover the surface without gaps.
On the Attributes page, you can set the following parameters:
Number of Facets
Each grid or surface consists of a specific number of facets. For instance, the plate shown here has a 10×10 arrangement of facets, while the disc here has 6×12 facets. Each facet is a quadrilateral formed by four wires, with each wire divided into segments.
For solid surfaces, the wires are essentially flat strips that cover the entire surface. In the AN-SOF workspace, only the strip axes are displayed. During the simulation process, an unknown current is determined for each wire segment.
You have the flexibility to individually edit any curved or straight wire that comprises a grid or surface. Refer to Modifying a Wire for details on editing individual wires. If you need to make mass edits to the wires that make up a grid or surface, please refer to Modifying a Grid/Surface.
In the case of a Patch, setting the number of facets to 0x0 results in an automatic calculation. The calculation considers 10 segments per wavelength along each side of the patch, with the wavelength corresponding to the highest frequency defined.
Segments per Wire
This parameter determines the number of segments for each wire within the grid/surface. If “Segments per Wire” is set to zero, each wire will be automatically divided into segments, with the calculation based on a default value of 10 segments per wavelength.
Please note that the Patch type does not offer the option to specify “Segments per Wire” since its facets are composed of one-segment wires and the number of facets can be automatically computed by setting 0x0 facets.
Cross-Section
To define a wire grid, choose a Circular cross-section and set the radius of the wires comprising the grid, as shown in Fig. 1 on the left. Wire grids cannot have infinitesimally thin wires, so the cross-section radius “a” must be greater than zero.
To define a solid surface, select either the Flat or Rectangular cross-section for the wires that constitute the surface, as shown in Fig. 1 on the right. These wires are essentially flat strips that completely cover the surface. With the ‘Rectangular’ cross-section option, you can specify the thickness of the solid surface.