Search for answers or browse our Knowledge Base.
Guides | Models | Validation | Book
-
Guides
-
-
- New Tools in AN-SOF: Selecting and Editing Wires in Bulk
- How to Speed Up Simulations in AN-SOF: Tips for Faster Results
- Enhancing Antenna Design Flexibility: Project Merging in AN-SOF
- AN-SOF Antenna Simulation Best Practices: Checking and Correcting Model Errors
- How to Adjust the Radiation Pattern Reference Point for Better Visualization
- H-Field Option in Preferences
-
- Can AI Design Antennas? Lessons from a 3-Iteration Yagi-Uda Experiment
- Modeling Common-Mode Currents in Coaxial Cables: A Hybrid Approach
- Beyond Analytical Formulas: Accurate Coil Inductance Calculation with AN-SOF
- Complete Workflow: Modeling, Feeding, and Tuning a 20m Band Dipole Antenna
- DIY Helix High Gain Directional Antenna: From Simulation to 3D Printing
- Design Guidelines for Skeleton Slot Antennas: A Simulation-Driven Approach
- Simplified Modeling for Microstrip Antennas on Ungrounded Dielectric Substrates: Accuracy Meets Simplicity
- Fast Modeling of a Monopole Supported by a Broadcast Tower
- Linking Log-Periodic Antenna Elements Using Transmission Lines
- AN-SOF Mastery: Adding Elevated Radials Quickly
- An Efficient Approach to Simulating Radiating Towers for Broadcasting Applications
- RF Techniques: Implicit Modeling and Equivalent Circuits for Baluns
-
- Understanding the Antenna Near Field: Key Concepts Every Ham Radio Operator Should Know
- Evaluating EMF Compliance - Part 1: A Guide to Far-Field RF Exposure Assessments
- Evaluating EMF Compliance - Part 2: Using Near-Field Calculations to Determine Exclusion Zones
- Wave Matching Coefficient: Defining the Practical Near-Far Field Boundary
- AN-SOF Data Export: A Guide to Streamlining Your Workflow
- Front-to-Rear and Front-to-Back Ratios: Applying Key Antenna Directivity Metrics
- Export Radiation Patterns to MSI Planet
- Export Radiation Patterns to Radio Mobile
- Scilab Script for Plotting Level Curves
- Adjusting the Color Bar in AN-3D Pattern
-
-
-
- Introducing AN-SOF 10.5 – Smarter Tools, Faster Workflow, Greater Precision
- Introducing the AN-SOF Engine: Power, Speed, and Flexibility for Antenna Simulation
- What’s New in AN-SOF 10? Smarter Tools for RF Professionals and Antenna Enthusiasts
- To Our Valued AN-SOF Customers and Users: Reflections, Milestones, and Future Plans
- AN-SOF 9.50 Release: Streamlining Polarization, Geometry, and EMF Calculations
- AN-SOF 9: Taking Antenna Design Further with New Feeder and Tuner Calculators
- AN-SOF Antenna Simulation Software - Version 8.90 Release Notes
- AN-SOF 8.70: Enhancing Your Antenna Design Journey
- Introducing AN-SOF 8.50: Enhanced Antenna Design & Simulation Software
- Get Ready for the Next Level of Antenna Design: AN-SOF 8.50 is Coming Soon!
- Explore the Cutting-Edge World of AN-SOF Antenna Simulation Software!
- Upgrade to AN-SOF 8.20 - Unleash Your Potential
- AN-SOF 8: Elevating Antenna Simulation to the Next Level
- New Release: AN-SOF 7.90
- AN-SOF 7.80 is ready!
- New AN-SOF User Guide
- New Release: AN-SOF 7.50
- AN-SOF 7.20 is ready!
- New Release :: AN-SOF 7.10 ::
- AN-SOF 7.0 is Here!
- New Release :: AN-SOF 6.40 ::
- New Release :: AN-SOF 6.20 ::
- Show All Articles (7) Collapse Articles
-
-
- Types of Wires
- Wire Attributes
- Wire Materials
- Enabling/Disabling Resistivity
- Enabling/Disabling Coating
- Cross-Section Equivalent Radius
- Exporting Wires
-
-
Models
-
- Download Examples
- Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
- Modeling a Center-Fed Cylindrical Antenna with AN-SOF
- Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
- Monopole Antennas Over Imperfect Ground: Modeling and Analysis with AN-SOF
- Modeling Helix Antennas in Axial Radiation Mode Using AN-SOF
- Step-by-Step: Modeling Basic Yagi-Uda Arrays for Beginners
- A Transmission Line
- An RLC Circuit
-
- Pi Day Special: A Short Dipole with Radiation Resistance of 3.14 Ohms
- Modeling a Super J-Pole: A Look Inside a 5-Element Collinear Antenna
- The 5-in-1 J-Pole Antenna Solution for Multiband Communications
- Simulating a Multiband Omnidirectional Dipole Antenna Design
- The Loop on Ground (LoG) Antenna: A Compact Solution for Directional Reception
- Precision Simulations with AN-SOF for Magnetic Loop Antennas
- Advantages of AN-SOF for Simulating 433 MHz Spring Helical Antennas for ISM & LoRa Applications
- Understanding the Folded Dipole: Structure, Impedance, and Simulation
- Radio Mast Above Wire Screen
- Experimenting with Half-Wave Square Loops: Simulation and Practical Insights
- Radar Cross Section and Reception Characteristics of a Passive Loop Antenna: A Simulation Study
- Monopole Above Earth Ground
- Design and Simulation of Short Top-Loaded Monopole Antennas for LF and MF Bands
- Half-Wave Dipole
- Dipole Antenna
-
- Efficient NOAA Satellite Signal Reception with the Quadrifilar Helix Antenna
- Inverted V Antenna
- Boosting Performance with Dual V Antennas: A Practical Design and Simulation
- Helical Antenna with Grid Reflector
- Helical Antenna with PEC Reflector
- 7-Element Yagi-Uda
- 5-Element Yagi-Uda
- 3-Element Yagi-Uda
-
- Exploring an HF Log-Periodic Sawtooth Array: Insights from Geometry to Simulation
- The Lazy-H Antenna: A 10-Meter Band Design Guide
- Extended Double Zepp (EDZ): A Phased Array Solution for Directional Antenna Applications
- Transmission Line Feeding in Antenna Design: Exploring the Four-Square Array
- Enhancing VHF Performance: The Dual Reflector Moxon Antenna for 145 MHz
- Building a Compact High-Performance UHF Array with AN-SOF: A 4-Element Biquad Design
- Building a Beam: Modeling a 5-Element 2m Band Quad Array
- A Closer Look at the HF Skeleton Slot Antenna
- The 17m Band 2-Element Delta Loop Beam: A Compact, High-Gain Antenna for DX Enthusiasts
- The Moxon-Yagi Dual-Band VHF/UHF Antenna for Superior Satellite Link Performance
- Broadside Dipole Array
- Log-Periodic Dipole Array
- Broadband Directional Antenna
- Log-Periodic Christmas Tree
-
- Nelder-Mead Optimization for Antenna Design Using the AN-SOF Engine and Scilab
- Evolving Better Antennas: A Genetic Algorithm Optimizer Using AN-SOF and Scilab
- Building Effective Cost Functions for Antenna Optimization: Weighting, Normalization, and Trade-offs
- Element Spacing Simulation Script for Yagi-Uda Antennas
- Automating 2-Element Quad Array Design: Scripting and Bulk Processing in AN-SOF
-
-
Validation
-
- Simple Dual Band Vertical Dipole for the 2m and 70cm Bands
- Linear Antenna Theory: Historical Approximations and Numerical Validation
- Validation of a Panel RBS Antenna with Dipole Radiators against IEC 62232 Standard
- Validating V Antennas: Directivity Analysis with AN-SOF
- Enhanced Methodology for Monopoles Above Radial Wire Ground Screens
- Validating Dipole Antenna Simulations: A Comparative Study with King-Middleton
- Dipole Gain and Radiation Resistance
- Convergence of the Dipole Input Impedance
-
Book
-
- 1.0 Table of Contents
- 1.1 Maxwell’s Equations and Electromagnetic Radiation
- 1.2 The Isotropic Radiator
- 1.3 Isotropic Antenna Arrays
- 1.4 The Hertzian Dipole
- 1.5 The Short Dipole – FREE SAMPLE
- 1.6 The Half-Wave Dipole
- 1.7 Thin Dipoles of Arbitrary Length
- 1.8 Ground Plane and Image Theory
- 1.9 The Hertzian Monopole
- 1.10 Quarter-Wave and General Monopoles
-
- 2.1 Radiation Pattern Fundamentals
- 2.2 Field Strength and Intensity Plots
- 2.3 Total Radiated Power
- 2.4 Radiation Resistance
- 2.5 Antenna Effective Length
- 2.6 Loss Resistance Modeling
- 2.7 Radiation Efficiency
- 2.8 Directivity and Gain
- 2.9 Beamwidth and Sidelobes
- 2.10 Feedpoint Impedance and Bandwidth
- 2.11 Receiving Mode Operation
- 2.12 Equivalent Circuits for TX/RX
- 2.13 The Reciprocity Principle
- 2.14 Effective Aperture and Gain
- 2.15 The Friis Transmission Equation
-
- 3.1 Cylindrical Wire Antennas
- 3.2 Feedpoint Resistance and Reactance
- 3.3 Calculating Input Impedance
- 3.4 Induced EMF Method
- 3.5 Hallén’s Integral Equation
- 3.6 Pocklington’s Integral Equation
- 3.7 Equivalent Radius for Non-Circular Wires
- 3.8 Impedance of Short Dipoles and Monopoles
- 3.9 Top-Loading for Short Monopoles
- 3.10 Mutual Impedance Between Wires
-
A Closer Look at the HF Skeleton Slot Antenna
In this post, we’re going to dive into the world of HF Skeleton Slot Antennas, a unique array of two tightly coupled loops with a bi-directional pattern.
What is a Skeleton Slot Antenna?
The Skeleton Slot Antenna, believed to originate in the UK post-World War II for TV use, derives its name from the slot antenna. This aperture antenna forms by cutting a rectangular hole in a conducting sheet, effectively acting as a “photographic negative” of a dipole, with the slot serving as the radiating element. Simplifying the design to its bare essentials yields the skeleton slot. For analytical purposes, we can visualize this antenna as two closely interconnected loops sharing a single feed point. The antenna, including its top and bottom loops, as well as simulation results, is shown in the figure below.

This antenna design is known for its bi-directional radiation pattern and is well-suited for high-frequency (HF) bands, specifically within the 14 to 28 MHz range, when appropriately impedance matched. We can observe how the radiation pattern changes within this frequency range, with the gain varying from 4.7 to 6.8 dBi, while the antenna continues to maintain its bidirectionality.
The Key to Self-Resonance
One of the standout features of the Skeleton Slot Antenna is its self-resonant capability. This occurs when the perimeter of each loop is approximately equal to one wavelength at the desired operating frequency, and the ratio between the length and width of each rectangular loop is 3:2. In the example depicted in the figure above, each loop measures 4.5 x 3 meters, resulting in a resonant frequency of 19.8 MHz, as indicated by the dip in the VSWR curve.
Note that the perimeter of each loop is 2 x (4.5 + 3) = 15 meters, which is precisely the wavelength at 20 MHz, very close to the resonant frequency of 19.8 MHz.
In the January 1955 issue of The Shortwave Magazine, there is an article by B. Sykes (G2HCG) titled “The Skeleton Slot Aerial System” (Vol. XII, No. 11, pp. 594-598). In this article, the antenna is described as an array of two dipoles. The author, through experimental findings, concludes that the optimal length of the sides of the entire antenna should be 0.56 times the wavelength (λ), with a total length-to-width ratio of 3:1. These values, applied to each individual loop, result in a perimeter of 2 x (1/2 + 1/3) x 0.56λ = 0.93λ.
However, it’s worth noting that the radiation pattern and input impedance behavior of the antenna correspond more closely to that of a loop-type antenna, composed of two tightly coupled loops in this case. In this configuration, the antenna resonates when its perimeter measures approximately one wavelength. To illustrate this point, you can refer to the article “Input Impedance and Directivity of Large Circular Loops,” which validates AN-SOF results against theory.
Benefits of the HF Skeleton Slot Antenna
- Bi-Directional Pattern: This antenna’s bi-directional pattern makes it a valuable choice for situations where we need to communicate in two opposite directions simultaneously.
- Frequency Range: The HF Skeleton Slot Antenna covers a broad frequency range within the HF spectrum, making it versatile for various amateur radio and communication applications.
- Self-Resonance: Achieving self-resonance simplifies the tuning process and ensures optimal performance at the desired frequency.
In conclusion, the Skeleton Slot Antenna is a remarkable choice for HF communication enthusiasts. Its bi-directional pattern, wide frequency range, and self-resonant capabilities make it a valuable addition to your radio setup.
See Also:

About the Author
Tony Golden
Have a question?