Antennas and Beyond!
This is a blog dedicated to exploring the fascinating world of antenna design and simulation. Whether you’re a beginner or an experienced engineer, you’ll find valuable insights into antenna modeling, theory, numerical methods, and practical examples of antenna models using AN-SOF Antenna Simulation Software.
Featured
-
Evaluating EMF Compliance – Part 2: Using Near-Field Calculations to Determine Exclusion Zones
In this article, we dive deep into near-field calculations to establish RF exclusion zones. By understanding near-field and far-field regions, occupational vs. public exposure, health impacts, and practical methods, we ensure compliance with EMF guidelines and safeguard human health.
-
AN-SOF 9.50 Release: Streamlining Polarization, Geometry, and EMF Calculations
We’re thrilled to announce AN-SOF 9.50, packed with user-requested enhancements. Improved geometry input, simplified polarization analysis, and new EMF compliance tools make antenna design easier and more precise than ever. Upgrade your design process with AN-SOF 9.50!
-
Evaluating EMF Compliance – Part 1: A Guide to Far-Field RF Exposure Assessments
In today’s wireless world, ensuring Electromagnetic Field (EMF) compliance is crucial for protecting individuals from potential harmful effects of RF exposure. Join us as we explore the influence of antenna configurations, ground planes, and feed lines on far-field EIRP values, ensuring you possess the tools to navigate the complexities of EMF compliance effectively.
Subscribe to our free mailing list and be the first to receive new content as soon as it’s published on our blog Antennas and Beyond!
Sections
The Antenna Lab
Unlock the world of antenna design! This section offers engaging resources for educators and students, fostering a deeper understanding of antenna theory and practice.
The Ham’s Corner
Take your ham radio skills to the next level! This section offers practical tips, tutorials, and project ideas specifically designed for the needs and interests of radio enthusiasts.
Advanced RF Edge
Delve into the cutting edge of antenna design. This section explores industry trends, insightful case studies, and advanced technical insights to empower antenna professionals.
Categories
Adding Wire Grids/Solid Surfaces Adding Wires Antenna Feeder Calculator Apertures & Reflectors Array Antennas Background Theory Complex Environments Current Distribution Curved Antennas Displaying Results Drawing Wires Editing Wires FAQs Far Field Fractal Antennas Getting Started Grids and Surfaces Ground Planes Guides Guides & Tools Incident Field Input Impedances Linear Antennas Load Impedances Microstrip Antennas Modeling Guidelines Models Near Field Numerical Methods Release Notes Results Display Running Calculations Scripts Setup Guide Simulation Setup Sources and Loads Step By Step Transmission Lines Traveling Wave Validation Wire Antennas
Tags
advanced RF (13) antenna arrays (15) antenna design (8) antenna lab (19) blog (72) broadband (2) dipole (8) directional (18) featured (3) fractal (1) ham radio (24) helix (4) loop (11) microstrip (2) monopole (4) multiband (4) omnidirectional (12) quad (3) release notes (18) tips & tricks (12) transmission lines (4) validation (3) yagi (3)
Search
Recent Articles
-
Modeling a Super J-Pole: A Look Inside a 5-Element Collinear Antenna
Simulating a Super J-Pole: A 2m Antenna Analysis. This article describes a 5-element collinear antenna design for the 2m band, its radiation pattern, VSWR, and key components for optimal performance.
-
AN-SOF 8: Elevating Antenna Simulation to the Next Level
New Plots tab where we can quickly see the input impedance, VSWR, gain, Front-to-Rear, and Front-to-Back ratios as a function of frequency, with various visualization controls (grids, points, markers, etc.).
-
Simulating the Ingenious Multiband Omnidirectional Dipole Antenna Design
Delve into the virtual realm of an ingenious multiband omnidirectional dipole antenna. Explore its design intricacies through simulation.
-
The Loop on Ground (LoG) Antenna: A Compact Solution for Directional Reception
The Loop on Ground (LoG) antenna offers a compact solution for directional reception with a cardioid radiation pattern. This article explores its design and highlights the efficiency achieved through the Conformal Method of Moments (CMoM).
-
Log-Periodic Christmas Tree
At Golden Engineering we are passionate about antenna simulation. On this last day of the year we want to give you our Log-Periodic Christmas Tree made with AN-SOF.
-
New Release: AN-SOF 7.90
This version of AN-SOF has new functions and options: ARRL-style scale in polar plots. Radiation pattern slices in decibels can be displayed…
-
Precision Simulations with AN-SOF for Magnetic Loop Antennas
Explore dual-loop magnetic antenna design and simulation with AN-SOF. Model performance at five frequencies, showcasing radiation patterns, current distributions, and tuning values. Automated bulk simulations streamline the process.
-
Efficient NOAA Satellite Signal Reception with the Quadrifilar Helix Antenna
The Quadrifilar Helix (QFH) antenna, with its unique design and circular polarization, ensures efficient NOAA satellite signal reception. This article explores the history, key characteristics, and practical modeling of QFH antennas using AN-SOF, providing valuable insights for RF engineers and enthusiasts.
-
Validating V Antennas: Directivity Analysis with AN-SOF
This article validates AN-SOF’s results against established formulas for V antennas, highlighting its advanced modeling capabilities. We explore optimal angles, directivity enhancements, and precise calculations, making AN-SOF a powerful tool for RF engineers, ham radio enthusiasts, and antenna designers.
-
Enhancing VHF Performance: The Dual Reflector Moxon Antenna for 145 MHz
Discover the Dual Reflector Moxon Antenna at 145 MHz: Amplified Gain and Enhanced Performance for VHF Enthusiasts.
-
Building a Compact High-Performance UHF Array with AN-SOF: A 4-Element Biquad Design
Need a compact directional antenna for your UHF needs? This 4-element Biquad antenna, designed with AN-SOF, packs a powerful punch in a relatively small space. Perfect for UHF applications where space is at a premium!
-
Validating Dipole Antenna Simulations: A Comparative Study with King-Middleton
This article presents a comprehensive comparison between AN-SOF’s dipole antenna simulations and the renowned King-Middleton second-order solution. Through rigorous analysis and numerical experiments, we validate the accuracy and reliability of AN-SOF in predicting dipole antenna input impedance.
-
Building a Beam: Modeling a 5-Element 2m Band Quad Array
Want a directional antenna for the 2m band? This article explores modeling a 5-element quad array in AN-SOF, achieving good gain and front-to-back ratio.
-
Advantages of AN-SOF for Simulating 433 MHz Spring Helical Antennas for ISM & LoRa Applications
Struggling with complex helical antenna designs for LoRa & ISM? AN-SOF overcomes limitations of traditional methods, enabling accurate simulations of 433 MHz spring helical antennas.
-
AN-SOF in Action: Modeling and Understanding the Performance of Fractal Antennas
Dive into the fascinating world of fractal antennas! This article explores their revolutionary design principles using AN-SOF simulation software. Discover how self-similar patterns unlock wider bandwidths, smaller sizes, and superior efficiency compared to traditional antennas.
-
Broadband Directional Antenna
This is a 4 element broadband directional antenna. More than 50 MHz of bandwidth (SWR < 1.5) around 285 MHz. Gain 7 to 8 dBi. Length 0.52 m and maximum width 0.6 m.
-
Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
This step-by-step guide empowers you to simulate circular loop antennas in AN-SOF. We’ll configure the software, define loop geometry, and explore how its size relative to wavelength affects radiation patterns and input resistance. Gain valuable insights into this fundamental antenna type!
-
Modeling a Center-Fed Cylindrical Antenna with AN-SOF
Learn how to simulate a center-fed cylindrical antenna using AN-SOF software. This step-by-step guide covers setup, geometry creation, simulation, and result analysis. Understand dipole characteristics through practical examples.
-
AN-SOF Data Export: A Guide to Streamlining Your Workflow
Unleash the power of your AN-SOF simulations! This article explores the software’s data export features, enabling you to seamlessly transfer results to spreadsheets for further analysis, report generation, and clear communication of your antenna design findings.
-
Enhancing Antenna Design: Project Merging in AN-SOF
Discover how AN-SOF’s project merging feature enhances antenna design flexibility, unlocking new possibilities.
-
On the Modeling of Radio Masts
Radiating towers or radio masts can be modeled in AN-SOF with a high degree of detail, as shown in the figure below. Since we already know the omnidirectional shape of the radiation pattern, what interests us is to calculate electric field values at ground level for a given input power.
-
RF Techniques: Implicit Modeling and Equivalent Circuits for Baluns
Explore how AN-SOF simplifies the process of modeling transformers and baluns with implicit techniques. Learn to transform antenna impedance using equivalent circuits. A must-read for engineers and RF enthusiasts!
-
Setting the Radiation Pattern Center
From the far field point of view, the whole structure of an antenna and its surroundings is reduced to a single point at the origin (X,Y,Z) = (0,0,0).
-
H-Field Option in Preferences
We see that most of the time we are interested in calculating only the E-field in antenna projects when we are talking about the near field. For this reason, we have added an option to enable or disable the automatic calculation of the H-Field.
-
AN-SOF 7.80 is ready!
New version of Antenna Simulation Software: AN-SOF 7.8.
-
New AN-SOF User Guide
Explore the new AN-SOF User Guide >, where you will find detailed information about its many features, as well as step-by-step examples and tips to help you quickly move forward with your antenna modeling projects.
-
Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
Discover 5 antenna models with less than 50 segments in AN-SOF Trial Version. These examples showcase the capabilities of our software for antenna modeling and design, allowing you to evaluate its features for your projects.
-
A Closer Look at the HF Skeleton Slot Antenna
Explore the intricacies of the HF Skeleton Slot Antenna – a bi-directional marvel offering versatile HF communication.
-
The 5-in-1 J-Pole Antenna Solution for Multiband Communications
Experience versatile communication with this 5-in-1 J-Pole Antenna – your go-to solution for multiband excellence.
-
New Release: AN-SOF 7.50
New version of Antenna Simulation Software: AN-SOF 7.50.
Subscribe
Sign up for our free mailing list to receive new content as soon as it’s published on Antennas and Beyond!
Indexed Articles
- Aborting the Calculations
- Accurate Analysis of Solid Wheel Antennas at 2.4 GHz Using Cost-Effective Simulation
- A Closer Look at the HF Skeleton Slot Antenna
- Adding a Custom Lossy Line
- Adding a Dielectric Substrate
- Adding a Feed Line and Transformer
- Adding a PEC Ground Plane
- Adding a Real Ground Plane
- Adding Loads
- Adding Sources
- Adding Transmission Lines
- Adjusting the Color Bar in AN-3D Pattern
- Advantages of AN-SOF for Simulating 433 MHz Spring Helical Antennas for ISM & LoRa Applications
- An RLC Circuit
- AN-SOF 7.0 is Here!
- AN-SOF 7.20 is ready!
- AN-SOF 7.80 is ready!
- AN-SOF 8.70: Enhancing Your Antenna Design Journey
- AN-SOF 8: Elevating Antenna Simulation to the Next Level
- AN-SOF 9.50 Release: Streamlining Polarization, Geometry, and EMF Calculations
- AN-SOF 9: Taking Antenna Design Further with New Feeder and Tuner Calculators
- AN-SOF Antenna Simulation Best Practices: Checking and Correcting Model Errors
- AN-SOF Antenna Simulation Software - Version 8.90 Release Notes
- AN-SOF Data Export: A Guide to Streamlining Your Workflow
- AN-SOF Implements James R. Wait Theory for Ground Losses of LF/MF Radio Masts
- AN-SOF in Action: Modeling and Understanding the Performance of Fractal Antennas
- AN-SOF Mastery: Adding Elevated Radials Quickly
- AN-SOF Overview
- AN-SOF User Guide
- Antennas on a Ship
- Arc
- Archimedean Spiral
- Articles Index Directory
- A Transmission Line
- Automating 2-Element Quad Array Design: Scripting and Bulk Processing in AN-SOF
- Calculating the Current Distribution
- Calculating the Far Field
- Calculating the Near E-Field
- Calculating the Near H-Field
- Capacitively-Fed Patch
- Car Roof Antenna
- Circle
- Complete Workflow: Modeling, Feeding, and Tuning a 20m Band Dipole Antenna
- Cone
- Conformal Method of Moments
- Connecting Transmission Lines
- Connecting Wires
- Connecting Wires to the Ground
- Convergence of the Dipole Input Impedance
- Copying and Stacking Wires
- Cross-Section Equivalent Radius
- Curved vs. Straight Segments
- Custom Feed Line Options
- Custom Preferences
- Custom Transmission Lines
- Cylinder
- Defining the Environment
- Defining the Excitation
- Deleting a Grid/Surface
- Deleting a Group of Wires
- Deleting a Wire
- Design Guidelines for Skeleton Slot Antennas: A Simulation-Driven Approach
- Dipole Antenna
- Dipole Gain and Radiation Resistance
- Directional V Antenna
- Disc
- Disclaimer of Warranty
- Dish Antenna
- Displaying Smith Charts
- DIY Helix High Gain Directional Antenna: From Simulation to 3D Printing
- Download Examples
- Editing Loads
- Editing Sources
- Editing Transmission Lines
- Efficient NOAA Satellite Signal Reception with the Quadrifilar Helix Antenna
- Electric Field Integral Equation
- Element Spacing Simulation Script for Yagi-Uda Antennas
- Enabling/Disabling Coating
- Enabling/Disabling Loads
- Enabling/Disabling Resistivity
- Enhanced Methodology for Monopoles Above Radial Wire Ground Screens
- Enhancing Antenna Design: Project Merging in AN-SOF
- Enhancing Satellite Links: The Moxon-Yagi Dual Band VHF/UHF Antenna
- Enhancing VHF Performance: The Dual Reflector Moxon Antenna for 145 MHz
- Evaluating EMF Compliance - Part 1: A Guide to Far-Field RF Exposure Assessments
- Evaluating EMF Compliance - Part 2: Using Near-Field Calculations to Determine Exclusion Zones
- Excitation by an Incident Field
- Excitation of the Structure
- Explore 5 Antenna Models with Less Than 50 Segments in AN-SOF Trial Version
- Explore the Cutting-Edge World of AN-SOF Antenna Simulation Software!
- Exploring the Spiral Loop Antenna: A Compact Solution for 80m DXing
- Exporting the Far Field
- Exporting the Near Field
- Exporting Wires
- Export Radiation Patterns to MSI Planet
- Export Radiation Patterns to Radio Mobile
- Extended Double Zepp (EDZ): A Phased Array Solution for Directional Antenna Applications
- 7-Element Yagi-Uda
- 5-Element Yagi-Uda
- 3-Element Yagi-Uda
- Licensing FAQ
- Line
- Linear Antenna Theory: Historical Approximations and Numerical Validation
- Linking Log-Periodic Antenna Elements Using Transmission Lines
- Listing Load Impedances
- Listing the Currents in a Segment
- Listing the Input Impedances, VSWR, and S11
- Logarithmic Spiral
- Log-Periodic Christmas Tree
- Log-Periodic Dipole Array
- MI2 Fractal Loop
- Microstrip Antenna Array
- Microstrip Dipole
- Modeling a Center-Fed Cylindrical Antenna with AN-SOF
- Modeling a Circular Loop Antenna in AN-SOF: A Step-by-Step Guide
- Modeling a Super J-Pole: A Look Inside a 5-Element Collinear Antenna
- Modeling Coaxial Cables
- Modifying a Grid/Surface
- Modifying a Group of Wires
- Modifying a Wire
- Monopole Above Earth Ground
- Monopole Over Real Ground
- Moving, Rotating, and Scaling Wires
- Parabolic Grid Antenna
- Paraboloid
- Patch
- Patch Antenna
- Plate
- Plotting 2D Far Field Patterns
- Plotting 3D Far Field Patterns
- Plotting Near Field Patterns
- Plotting the Current Distribution
- Plotting the Far Field Spectrum
- Plotting the Near Field Spectrum
- Power Budget
- Precision Simulations with AN-SOF for Magnetic Loop Antennas
- Project Details
- Scilab Script for Plotting Level Curves
- Selecting a Wire
- Setting the Radiation Pattern Center
- Shortcut Keys
- Simple Dual Band Vertical Dipole for the 2m and 70cm Bands
- Simplified Modeling for Microstrip Antennas on Ungrounded Dielectric Substrates: Accuracy Meets Simplicity
- Simulating the Ingenious Multiband Omnidirectional Dipole Antenna Design
- Specifying the Frequencies
- Sphere
- Square Loop Antenna
- Tabular Input of Linear Wires
- Tapered Wires
- Technical FAQ
- The 17m Band 2-Element Delta Loop Beam: A Compact, High-Gain Antenna for DX Enthusiasts
- The 3D-View Interface
- The 5-in-1 J-Pole Antenna Solution for Multiband Communications
- The AN-SOF Calculation Engine
- The AN-SOF Interface
- The Conformal Method of Moments
- The Exact Kernel
- The Lazy-H Antenna: A 10-Meter Band Design Guide
- The List Currents Toolbar
- The Loop on Ground (LoG) Antenna: A Compact Solution for Directional Reception
- The Plots Tab
- The Results Tab
- The Run ALL Command
- The Settings Panel
- The Setup Tab
- The Source/Load/TL Toolbar
- Tools in the Workspace
- Top-Loaded Short Monopole
- Transmission Line Feeding for Antennas: The Four-Square Array
- Troubleshooting
- Truncated Cone
- Tuner for Impedance Matching
- Types of Excitations and Loads
- Types of Grids and Surfaces
- Types of Results
- Types of Wires